AGENDA – WORKSHOP OF THE CITY COUNCIL OF THE CITY OF PEARLAND, TEXAS, TO BE HELD ON MONDAY, JULY 22, 2013, AT 6:00 P.M., IN THE COUNCIL CHAMBERS, CITY HALL, 3519 LIBERTY DRIVE, PEARLAND, TEXAS.

I. CALL TO ORDER

II. PURPOSE OF THE WORKSHOP:

1. COUNCIL INPUT AND DISCUSSION: REGARDING THE SUBREGIONAL PLANNING INITIATIVE UPDATE. Mr. Jon Branson, Assistant City Manager.

2. COUNCIL INPUT AND DISCUSSION: REGARDING THE COMPENSATION AND CLASSIFICATION STUDY UPDATE. Mr. Bill Eisen, City Manager.

3. COUNCIL INPUT AND DISCUSSION: REGARDING THE TRAFFIC POLICY UPDATE. Ms. Andrea Broughton, Deputy Director/City Engineer.

4. COUNCIL INPUT AND DISCUSSION: REGARDING THE PROJECTS QUARTERLY UPDATE. Mr. Trent Epperson, Director of Capital Projects and Engineering.

III. ADJOURNMENT

This site is accessible to disabled individuals. For special assistance, please call Young Lorfing at 281-652-1840 prior to the meeting so that appropriate arrangements can be made.
1. COUNCIL INPUT AND DISCUSSION: REGARDING THE SUBREGIONAL PLANNING INITIATIVE UPDATE. Mr. Jon Branson, Assistant City Manager.
EXECUTIVE SUMMARY

In July of 2011, City Council authorized the City to participate in the Pearland area Subregional Planning Initiative. The project was funded through a 75% grant provided by Houston-Galveston Area Council (HGAC). The purpose of the grant was to perform a detailed transportation and mobility study for the Pearland area subregion. The study officially kicked off in January of 2012.

The total cost of the study was $255,500. Our cost for the project was $48,850 representing approximately 19% of 25% local match. The balance of the overall remaining match was provided by Bay Area Transportation (BayTran), Brazoria County, the City of Alvin and the 288 Partnership.

The intent of the Subregional Planning process as envisioned by HGAC is to work with area jurisdictions and other area transportation agencies to develop solutions to improve mobility, connectivity and access to a region. The overall goal of the Subregional Planning Initiative is to facilitate the planning process in subregional areas of the eight-county Transportation Management Area (H-GAC’s service area); in order to create viable projects to be included in the Transportation Improvement Plan (TIP) that ultimately reflects the goals of the 2035 Regional Transportation Plan (RTP).
The study provided an in-depth examination of the subregional area, identifying the goals and priorities of the communities and agencies involved in the process, an assessment of existing conditions, and the development of recommendations and implementation strategies to achieve the goals and priorities of the plan.

RECOMMENDED ACTION

Hans-Michael Ruthe Project Manager for HGAC will provide a brief update on the status of the study.
EXECUTIVE SUMMARY
EXECUTIVE SUMMARY

STUDY AREA

The SPI study area is located in Northern Brazoria County and includes four major jurisdictions:

- Brazoria County (northern portion)
- City of Pearland
- City of Alvin
- City of Manvel

STUDY PURPOSE

In recent years, needs in the region have far outweighed available federal funds for transportation projects; therefore, jurisdictions with alternative means to fund projects locally are at an advantage for project implementation. The SPI program was created by TPC to identify future strategic investments that can help stretch limited funding further. The SPI process focuses on innovative strategies including the coordination of transportation and land use and locally driven actions that support regional and sub-regional goals. Projects and strategies identified through the SPI are intended to both “feed” the regional pipeline for inclusion in the RTP if they are appropriate for federal-aid funding, and help local governments think strategically about alternative solutions or projects that they can implement on their own.

Funded by a partnership between H-GAC, Brazoria County, the City of Pearland, the City of Alvin, the Greater 288 Partnership, and BayTran, the Northern Brazoria County/Pearland SPI investigated the existing land use and transportation conditions of northern Brazoria County and identified strategies that will best position the sub-region to maintain and improve mobility as its population and employment grows.

MEAN COMMUTE TIME IN MINUTES

- Alvin-Pearland CCD: 31.1 minutes
- City of Pearland: 28.6 minutes
- City of Alvin: 26.1 minutes
- City of Manvel: 32.3 minutes
- Brazoria County: 27.7 minutes
- Houston-Sugarland-Baytown MSA: 27.7 minutes
The SPI was developed to address the following issues in Northern Brazoria/Pearland:

- Significant **population growth** in recent years
- Average mean **commute time** for major jurisdictions of almost **29 minutes**
- Increasing congestion
- Need for coordinated transportation investments
- Approximately **87%** of employed residents **commute outside of the study area** for work

The greatest priority in the SPI planning process is to ensure that the plan reflects the needs and vision of the residents of the Northern Brazoria County/Pearland sub-region. Through a robust public outreach and stakeholder engagement process, the plan seeks to strengthen local capacity to sustain and implement the short and long-term goals of the plan. The public engagement process included:

- Four Stakeholder Advisory Committee (SAC) meetings
- Six sponsoring agency staff meetings
- One elected official workshop
- Two Public workshops
Through the planning process, resident and stakeholder participants developed the following vision statement and goals.

Vision Statement:
The residents of the region will have a high quality of life built on livable transportation and land use solutions that promote economic development; cultural diversity; community health and safety; preservation of natural resources, and fiscal prudence.

Goals
- Engage the public in the decision making process
- Provide a wide range of transportation choices
- Promote economic development throughout the sub-region
- Maintain fiscal prudence
- Strengthen community well-being and safety
- Preserve and enhance natural resources

To assist in evaluating the long-term benefits of possible transportation investments, four different land use and transportation scenarios were developed. They included a mix of transportation and transit projects proposed by previous studies, findings from the technical analysis, public engagement, and consultation with the SAC. The roadway improvement projects included in the scenarios were identified in the 2035 RTP.

SCENARIO DEVELOPMENT & PROJECT EVALUATION

After an analysis of conditions and needs, several potential improvement projects were identified. These potential projects were evaluated based on an analysis of the following:

- How well they furthered the vision and goals
- Results of scenario evaluation
- Qualitative Criteria
 - Continuation of existing road widening projects
 - Municipality development
 - Connectivity
 - Construction design process
 - Parallel relief
- Quantitative Criteria
 - Level of Service (LOS) score
 - Fatal crash score
 - Total crash score
Executive Summary

The scenario results suggest that better linkage of transportation and land use decisions can positively impact the mobility of residents within the sub-region by:

- Reduced long term capital costs
- Multi-modal transportation options
- Reduced Vehicles Miles Traveled (VMT), Vehicles Hours Traveled (VHT), and VMT in congestion
- Increased opportunities for pedestrians
- Reduced level of environmental impact

By coordinating transportation investment options and land and use decision-making, northern Brazoria County stakeholders can encourage transit-supportive densities, reduce environmental impacts, and make a measurable dent in commute times.

SUMMARY OF RECOMMENDED PROJECTS

Ongoing efforts to engage stakeholders through interagency coordination and public outreach were keys to the success of the SPI planning process. The integration of land use and transportation solutions, discussion of priorities, and identification of potential future funding opportunities during the planning process culminated in the main findings of the plan. Recommended project and programs include:

- **Roadway improvements** - Intended to reduce congestion and improve connectivity throughout the SPI region
- **Land use policy strategies** - Intended to position for future improvements, particularly around identified ‘Activity Centers’
- **Incremental transit improvements** - Intended to relieve congestion, enhance mobility to and from regional employment centers, provide transportation choice, and enhance economic development potential
- **Bicycle & pedestrian improvements** - Intended to enhance livability and connect neighborhoods, parks, activity centers, and other major destinations
- **Increased long-range transportation coordination among sub-regional partners**
- **Strategic status updates of certain transportation improvements**

Each study recommendation is presented in a series of jurisdictional Implementation Workbooks. In the workbooks, the potential benefits achieved through the implementation of each recommendation are considered against the vision, goals, and objectives. The workbooks represent a strategic approach to implementation for each of the study’s findings.

ROADWAY PROJECTS

Transportation system improvements identified during the SPI process include the advancement of currently unfunded projects shed during an update to the long-range plan in 2008. Through the SPI process, the value of these projects was tested through technical analysis and vetted through stakeholder and public engagement activities. The resulting list is recommended for adoption as priorities, and support achievement of the SPI vision by providing the following benefits:

- Congestion relief and improve travel-times along major thoroughfares
- Facilitate future implementation of transit
- Enhance mobility to and from regional employment centers
- Enhance future economic development potential
- Improve roadway safety
- Continue implementation activities in support of previous and ongoing planning efforts
- Support enhancement of hurricane evacuation facilities
ROADWAY PROJECT RECOMMENDATIONS

"FI" = Facility Improvements "NF" = New Facilities
Semi-transparent lines represent currently planned future projects

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Roadway</th>
<th>From</th>
<th>To</th>
<th>Proposed Transportation Corridor Improvement Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI-1</td>
<td>SH 35</td>
<td>FM 518</td>
<td>S OF SH 6</td>
<td>Widen to 6-lane divided rural</td>
</tr>
<tr>
<td>FI-2</td>
<td>SH 6</td>
<td>SH 288</td>
<td>GALVESTON C/L</td>
<td>Widen to 6 & 8-lanes</td>
</tr>
<tr>
<td>FI-3</td>
<td>FM 518</td>
<td>SH 288</td>
<td>FM 865</td>
<td>Widen to 6-lane divided urban</td>
</tr>
<tr>
<td>FI-4</td>
<td>SH 35</td>
<td>SH 6</td>
<td>BS 35C SOUTH</td>
<td>4-lane tollway (most feasible toll alternative)</td>
</tr>
<tr>
<td>FI-5</td>
<td>FM 1128</td>
<td>SH 6</td>
<td>CR 100</td>
<td>Widen from 2 to 4 lanes w/bridges</td>
</tr>
<tr>
<td>FI-6</td>
<td>FM 518</td>
<td>FM 865</td>
<td>SH 35</td>
<td>Widen to 6-lane divided urban w/ flush median</td>
</tr>
<tr>
<td>FI-7</td>
<td>FM 1128</td>
<td>BROADWAY</td>
<td>BAILEY RD</td>
<td>Widen from 2 to 4-lanes divided curb and gutter</td>
</tr>
<tr>
<td>FI-8</td>
<td>SH 35</td>
<td>FM 2403</td>
<td>FM 523</td>
<td>Widen to 4-lane divided</td>
</tr>
<tr>
<td>FI-9</td>
<td>FM 1462</td>
<td>SH 288</td>
<td>SH 99</td>
<td>Widen from 2 to 4 lanes</td>
</tr>
<tr>
<td>FI-10</td>
<td>FM 1462</td>
<td>FORT BEND C/L</td>
<td>SUPER SPEEDWAY</td>
<td>Widen from 2 to 4-lanes</td>
</tr>
<tr>
<td>FI-11</td>
<td>FM 521</td>
<td>BRAZORIA/FORT BEND C/L</td>
<td>FM 1462</td>
<td>Widen 2 to 4-lanes</td>
</tr>
<tr>
<td>FI-12</td>
<td>FM 517</td>
<td>LP 409</td>
<td>SH 35</td>
<td>Widen to 4-lanes in sections</td>
</tr>
<tr>
<td>NF-1</td>
<td>FM 528</td>
<td>SH 35 BUSINESS</td>
<td>SH 6</td>
<td>Construct 2-lane urban undivided on new location with railroad grade separation (phase 1)</td>
</tr>
</tbody>
</table>
Executive Summary

TRANSIT SYSTEM RECOMMENDATIONS

Recommended Transit System Improvements

<table>
<thead>
<tr>
<th>Location</th>
<th>From</th>
<th>To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kirby Drive</td>
<td>Lower Kirby Urban Center</td>
<td>Texas Medical Center</td>
<td>High-Capacity Transit along Kirby Drive</td>
</tr>
<tr>
<td>SH 35 / Railroad Right of Way</td>
<td>Downtown Alvin</td>
<td>Downtown Pearland, connecting to transit points north along Interstate 45.</td>
<td>High-Capacity Transit along SH 35 or within railroad right-of-way from Downtown Alvin to Downtown Pearland</td>
</tr>
</tbody>
</table>

TRANSIT SYSTEM IMPROVEMENTS

A long term strategy to achieving a more sustainable land use and transportation vision for Northern Brazoria County / Pearland sub-regional Planning Initiative includes the implementation of transit. Map 02 illustrates the two potential transit opportunities identified through the SPI process. Benefits of the recommended transit project include:

- Relieve congestion and improve travel-times along major thoroughfares
- Enhance mobility to and from regional employment centers within the sub-region and to neighboring Counties
- Provide transportation choice
- Enhance future development potential
- Promote economic development
- Reduce Vehicle Miles Traveled
LAND USE RECOMMENDATIONS: FUTURE ACTIVITY CENTERS

As discussed in Section 4 – Scenario Development + Testing, three key focus areas emerged through the SPI process as having the potential to serve as future activity centers, where infrastructure investments can be targeted to increase economic development and attract residents. These three areas included the Lower Kirby Urban Center (formerly the Spectrum District), Downtown Pearland, and Downtown Alvin.

The plan also recommends a series of coordinated city land use policies intended to maximize future economic development in a manner that complements and enhances transportation investments.

These policies include the following:

- Coordinate major transportation investments with supportive land use policies
- Develop urban design guidelines to strengthen and retain community character
- Adopt mixed-use zoning districts where possible
- Adopt pedestrian and transit supportive districts to support transportation alternatives and emerging Activity Centers
BICYCLE AND PEDESTRIAN IMPROVEMENTS

Bicycle and pedestrian projects are integral to developing livable communities. The City of Pearland, Alvin, and Manvel have developed city-wide bicycle/pedestrian/trail master plans. In the future, these proposed bicycle and pedestrian corridors could connect to each other to form a regional bicycle and pedestrian networks.

This project proposes to develop a sub-regional bicycle/pedestrian plan through H-GACs Pedestrian and Bicyclist Special District Program that would accomplish the following in support of SPI goals:

- Integration of key bicycle/pedestrian projects into the Regional Transportation Plan (RTP).
- Supports multi-modal transportation options;
- Contributes to a reduction in congestion, capital infrastructure costs, and environmental across the sub-region
SUB-REGION BICYCLE & PEDESTRIAN PLAN
City of Pearland City Council

July 22, 2013
SPI Plan Background

FUNDING PARTNERS

- Brazoria County
- City of Pearland
- City of Alvin
- Greater 288 Partnership
- BayTran

VISION STATEMENT

The residents of the region will have a high quality of life built on livable transportation and land use solutions that promote economic development, cultural diversity, community health and safety, preservation of natural resources, and fiscal prudence.
GOALS

• Engage the public in the decision-making process
• Provide a wide range of transportation choices
• Promote economic development throughout the sub-region
• Maintain fiscal prudence
• Strengthen community well-being and safety
• Preserve and enhance natural resources
SPI Study Area

Major Jurisdictions
- Brazoria County
- City of Pearland
- City of Alvin
- City of Manvel
Why is the study needed?

Significant Population Growth

City of Pearland: 2010 Population = 91,252
City of Alvin: 2010 Population = 24,236
City of Manvel: 2010 Population = 5,179
Brazoria County: 2010 Population = 313,166
Why is the study needed?

Majority of residents commute out of Brazoria County for work

- Alvin-Pearland CCD: 31.1
- City of Pearland: 28.6
- City of Alvin: 26.1
- City of Manvel: 32.3
- Brazoria County: 27.7
- Houston-Sugarland-Baytown MSA: 27.7

Long Commute Times

- 13.3% Live + Work in Study Area
- 86.7% Live In Study Area + Work Outside Study Area
Community Outreach & Stakeholder Engagement

The SPI planning process was centered upon a robust community engagement strategy including the following:

1. Regular Stakeholder Advisory Committee (SAC) meetings
2. Sponsoring agency staff meetings
3. Elected official workshops
4. Public workshops
Project Evaluation

The SPI provides data and methodology for local partners to evaluate and sponsor projects

• Scenario Testing
 – Four likely future scenarios
 – Evaluation tool

• Prioritization
 – Qualitative and Quantitative
 – Long-range project assessment
Recommended Projects + Programs

Project & Program Types

• Roadway
• Land use policy strategies
• Incremental transit improvements
• Bicycle & pedestrian improvements
Roadway Project Recommendation

<table>
<thead>
<tr>
<th>Map ID</th>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Description</th>
<th>Estimated Cost**</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI-3</td>
<td>FM 518</td>
<td>SH 288</td>
<td>FM 865</td>
<td>Widens to 6-lane divided urban</td>
<td>$54,953,265</td>
</tr>
<tr>
<td>FI-6</td>
<td>FM 518</td>
<td>FM 865</td>
<td>SH 35</td>
<td>Widens to 6-lane divided urban w/ flush median</td>
<td>$104,343,984</td>
</tr>
<tr>
<td>FI-7</td>
<td>FM 1128</td>
<td>Broadway</td>
<td>Bailey Rd</td>
<td>Widens from 2 to 4-lanes divided curb and gutter</td>
<td>$18,624,896</td>
</tr>
<tr>
<td>FI-8</td>
<td>SH 35</td>
<td>FM 518</td>
<td>SH 6</td>
<td>Widens to 4-lanes w/ bridges</td>
<td>$56,557,935</td>
</tr>
<tr>
<td>FI-9</td>
<td>SH 35</td>
<td>FM 2043</td>
<td>FM 523</td>
<td>Widens to 4-lane divided</td>
<td>$195,244,221</td>
</tr>
<tr>
<td>FI-12</td>
<td>FM 517</td>
<td>LP 409</td>
<td>SH 35</td>
<td>Widens to 4-lanes in sections</td>
<td>$11,646,135</td>
</tr>
<tr>
<td>NF-1</td>
<td>FM 528</td>
<td>SH 35 Business</td>
<td>SH 6</td>
<td>Construct 2-lane urban undivided on new location with railroad grade separation</td>
<td>$10,000,000</td>
</tr>
<tr>
<td>FI-9</td>
<td>FM 1462</td>
<td>SH 288</td>
<td>SH 99</td>
<td>Widens from 2 to 4-lanes</td>
<td>$77,766,771</td>
</tr>
<tr>
<td>FI-10</td>
<td>FM 1462</td>
<td>Fort Bend C/L</td>
<td>Super Speedway</td>
<td>Widens from 2 to 4-lanes</td>
<td>$135,994,809</td>
</tr>
<tr>
<td>FI-11</td>
<td>FM 521</td>
<td>Brazoria/Fort Bend C/L</td>
<td>FM 1462</td>
<td>Widens 2 to 4-lanes</td>
<td>$71,342,115</td>
</tr>
</tbody>
</table>

FI = Facility Improvements
NF = New Facilities
Transit System Recommendation

Recommended Transit System Improvements

<table>
<thead>
<tr>
<th>Location</th>
<th>From</th>
<th>To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kirby Drive</td>
<td>Lower Kirby Urban Center</td>
<td>Texas Medical Center</td>
<td>High-Capacity Transit along Kirby Drive</td>
</tr>
<tr>
<td>SH 35 / Railroad Right of Way</td>
<td>Downtown Pearland, connecting to transit points north along Interstate 45.</td>
<td>Downtown Alvin</td>
<td>High-Capacity Transit along SH 35 or within railroad right-of-way from Downtown Alvin to Downtown Pearland</td>
</tr>
</tbody>
</table>
Sub-region Bicycle & Pedestrian Plan
Questions?
Planned improvements
<table>
<thead>
<tr>
<th>FI</th>
<th>MPO ID</th>
<th>Roadway</th>
<th>Project Description</th>
<th>Year</th>
<th>Cost Estimate in Millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11640</td>
<td>Veterans</td>
<td>Widen to 4 lane curb and gutter</td>
<td>2017</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>11655</td>
<td>ODay</td>
<td>Widen to 4 lane curb and gutter</td>
<td>2018</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12760</td>
<td>CR 59</td>
<td>Widen to 4 lane with bridge</td>
<td>2018</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>671</td>
<td>CR 403</td>
<td>Widen to 4 lane</td>
<td>2019</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>12759</td>
<td>CR 59</td>
<td>Widen to 4 lane with bridge</td>
<td>2023</td>
<td>12.6</td>
</tr>
<tr>
<td>6</td>
<td>10583</td>
<td>7th ST</td>
<td>Rehab</td>
<td>2022</td>
<td>5.8</td>
</tr>
<tr>
<td>7</td>
<td>13564</td>
<td>Harkey</td>
<td>Widen to 4 lane curb and gutter</td>
<td>2025</td>
<td>2.6</td>
</tr>
<tr>
<td>8</td>
<td>12402</td>
<td>CR 58</td>
<td>Widen to 4 lane curb and gutter</td>
<td>2018</td>
<td>34.7</td>
</tr>
<tr>
<td>9</td>
<td>11633</td>
<td>Cullen</td>
<td>Widen to 4 lane curb and gutter</td>
<td>2017</td>
<td>9.5</td>
</tr>
<tr>
<td>10</td>
<td>7625</td>
<td>Hughes Ranch Rd</td>
<td>Construct 4 lane roadways</td>
<td>2017</td>
<td>13.7</td>
</tr>
<tr>
<td>11</td>
<td>7631</td>
<td>Orange</td>
<td>Construct 4 lane undivided</td>
<td>2018</td>
<td>5.6</td>
</tr>
<tr>
<td>12</td>
<td>11635</td>
<td>Max</td>
<td>Widen to 4 lane curb and gutter</td>
<td>2018</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>13565</td>
<td>Max</td>
<td>Widen to 4 lane curb and gutter</td>
<td>2018</td>
<td>5.8</td>
</tr>
<tr>
<td>14</td>
<td>13566</td>
<td>ODay</td>
<td>Widen to 4 lane curb and gutter</td>
<td>2018</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MPO ID</th>
<th>Roadway</th>
<th>Project Description</th>
<th>Year</th>
<th>Cost Estimate in Millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>11641</td>
<td>Veterans</td>
<td>2020</td>
<td>4.6</td>
</tr>
<tr>
<td>16</td>
<td>11639</td>
<td>Harkey</td>
<td>2021</td>
<td>2.2</td>
</tr>
<tr>
<td>17</td>
<td>10555</td>
<td>FM 528</td>
<td>2021</td>
<td>17.5</td>
</tr>
<tr>
<td>18</td>
<td>10582</td>
<td>CR 181</td>
<td>2019</td>
<td>3.3</td>
</tr>
<tr>
<td>19</td>
<td>13767</td>
<td>SH 288</td>
<td>2032</td>
<td>261</td>
</tr>
<tr>
<td>20</td>
<td>11642</td>
<td>Hastings Cannon</td>
<td>2032</td>
<td>4.1</td>
</tr>
<tr>
<td>21</td>
<td>11643</td>
<td>Hastings Cannon</td>
<td>2033</td>
<td>3.8</td>
</tr>
<tr>
<td>22</td>
<td>669</td>
<td>FM 2351</td>
<td>2019</td>
<td>3.3</td>
</tr>
<tr>
<td>NF 1</td>
<td>7564</td>
<td>FM 528</td>
<td>2022</td>
<td>18.3</td>
</tr>
<tr>
<td>2</td>
<td>7624</td>
<td>Mykawa</td>
<td>2021</td>
<td>6.7</td>
</tr>
<tr>
<td>3</td>
<td>7630</td>
<td>Pearland Pkwy</td>
<td>2018</td>
<td>19.5</td>
</tr>
<tr>
<td>4</td>
<td>11653</td>
<td>CR 894</td>
<td>2031</td>
<td>37.5</td>
</tr>
<tr>
<td>5</td>
<td>258</td>
<td>GPW</td>
<td>2017</td>
<td>245</td>
</tr>
<tr>
<td>6</td>
<td>257</td>
<td>GPW</td>
<td>2020</td>
<td>690</td>
</tr>
</tbody>
</table>

15
2. COUNCIL INPUT AND DISCUSSION: REGARDING THE COMPENSATION AND CLASSIFICATION STUDY UPDATE.
Mr. Bill Eisen, City Manager.
AGENDA REQUEST
BUSINESS OF THE CITY COUNCIL
CITY OF PEARLAND, TEXAS

AGENDA OF: July 22, 2013
ITEM NO.: Workshop Item No. 2

DATE SUBMITTED: July 1, 2013
DEPARTMENT OF ORIGIN: HR

PREPARED BY: Bonita Hall
PRESENTER: Mr. Eisen

REVIEWED BY: Jon R. Branson
REVIEW DATE: July 17, 2013

SUBJECT: Compensation and Classification Study Update

EXHIBITS:

EXPENDITURE REQUIRED: N/A
AMOUNT BUDGETED: N/A
AMOUNT AVAILABLE: N/A
ACCOUNT NO.: N/A

PROJECT NO.: N/A
ACCOUNT NO.: N/A
PROJECT NO.: N/A

To be completed by Department:
☒ Finance ☐ Legal ☐ Ordinance ☐ Resolution

EXECUTIVE SUMMARY

In April 2013, we entered into an agreement with Public Sector Compensation Consultants (PSPC) for them to perform a classification and compensation study for the City in order provide an overall review of the classification and compensation plans, see how the plans rate to outside comparators and to make recommendations based on the aforementioned studies.

RECOMMENDED ACTION

Conduct Workshop to consider changes to the classification and compensation plans based on PSPC recommendations.

Revised 2007-01-09
City of Pearland
Aggregate Estimated Fiscal Impact of FY 2014 Salary Plan by Employee Group
Salary Structure @ Top Third in Houston Area
All Employees

<table>
<thead>
<tr>
<th>Employee Group</th>
<th>Number of Employees</th>
<th>Total Payroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL EMPLOYEES</td>
<td>401</td>
<td>$14,895,844</td>
</tr>
<tr>
<td>EMS</td>
<td>51</td>
<td>$1,645,513</td>
</tr>
<tr>
<td>FIRE DEPARTMENT</td>
<td>66</td>
<td>$2,227,946</td>
</tr>
<tr>
<td>POLICE CIVIL SERVICE</td>
<td>139</td>
<td>$8,560,943</td>
</tr>
<tr>
<td>Total Number of Employees</td>
<td>657</td>
<td>$27,330,247</td>
</tr>
</tbody>
</table>

Salaries Below Minimum

<table>
<thead>
<tr>
<th>Option</th>
<th>Salaries Below Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>$153,961</td>
</tr>
<tr>
<td></td>
<td>$153,961</td>
</tr>
<tr>
<td></td>
<td>$153,961</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Salaries Below Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>$53,698</td>
</tr>
<tr>
<td></td>
<td>$53,698</td>
</tr>
<tr>
<td></td>
<td>$53,698</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Salaries Below Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>$187,745</td>
</tr>
<tr>
<td></td>
<td>$187,745</td>
</tr>
<tr>
<td></td>
<td>$187,745</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Salaries Below Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$14,586</td>
</tr>
<tr>
<td></td>
<td>$14,586</td>
</tr>
<tr>
<td></td>
<td>$14,586</td>
</tr>
</tbody>
</table>

Time in Position/Step Salary Adjustments

<table>
<thead>
<tr>
<th>Employee Group</th>
<th>Time in Position/Step Salary Adjustments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General Employees</td>
</tr>
<tr>
<td></td>
<td>EMS</td>
</tr>
<tr>
<td></td>
<td>Fire Department</td>
</tr>
<tr>
<td></td>
<td>Police Civil Service - 5% market adjustment</td>
</tr>
<tr>
<td></td>
<td>Police Civil Service -Scheduled step increases (60 employees)</td>
</tr>
<tr>
<td>Total $ Time in Position Adjustments</td>
<td>$1,396,144</td>
</tr>
<tr>
<td>As % of total payroll</td>
<td>5.11%</td>
</tr>
<tr>
<td></td>
<td>Option 1</td>
</tr>
<tr>
<td></td>
<td>$647,627</td>
</tr>
<tr>
<td></td>
<td>$69,103</td>
</tr>
<tr>
<td></td>
<td>$78,101</td>
</tr>
<tr>
<td></td>
<td>$458,356</td>
</tr>
<tr>
<td></td>
<td>$142,958</td>
</tr>
<tr>
<td></td>
<td>$1,806,134</td>
</tr>
<tr>
<td>Cost as Percent of Payroll</td>
<td>6.61%</td>
</tr>
<tr>
<td></td>
<td>Option 2</td>
</tr>
<tr>
<td></td>
<td>$498,040</td>
</tr>
<tr>
<td></td>
<td>$52,138</td>
</tr>
<tr>
<td></td>
<td>$59,266</td>
</tr>
<tr>
<td></td>
<td>$458,356</td>
</tr>
<tr>
<td></td>
<td>$142,958</td>
</tr>
<tr>
<td></td>
<td>$1,620,748</td>
</tr>
<tr>
<td>Cost as Percent of Payroll</td>
<td>5.93%</td>
</tr>
<tr>
<td></td>
<td>Option 3</td>
</tr>
<tr>
<td></td>
<td>$348,079</td>
</tr>
<tr>
<td></td>
<td>$35,174</td>
</tr>
<tr>
<td></td>
<td>$37,975</td>
</tr>
<tr>
<td></td>
<td>$458,356</td>
</tr>
<tr>
<td></td>
<td>$142,958</td>
</tr>
<tr>
<td></td>
<td>$1,432,530</td>
</tr>
<tr>
<td>Cost as Percent of Payroll</td>
<td>5.24%</td>
</tr>
</tbody>
</table>

Average Change in Salaries ($/%)

<table>
<thead>
<tr>
<th>Option</th>
<th>Average Change in Salaries ($/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.61%</td>
</tr>
<tr>
<td></td>
<td>5.93%</td>
</tr>
<tr>
<td></td>
<td>5.24%</td>
</tr>
</tbody>
</table>

Total Projected Costs

<table>
<thead>
<tr>
<th>Salary Structure</th>
<th>Total Projected Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Salaries</td>
<td>$1,806,134</td>
</tr>
<tr>
<td>Cost as Percent of Payroll</td>
<td>6.61%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Total Projected Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1,620,748</td>
</tr>
<tr>
<td></td>
<td>$1,432,530</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Average Change in Salaries ($/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2,749</td>
</tr>
<tr>
<td></td>
<td>6.61%</td>
</tr>
<tr>
<td></td>
<td>$2,467</td>
</tr>
<tr>
<td></td>
<td>5.93%</td>
</tr>
<tr>
<td></td>
<td>$2,180</td>
</tr>
<tr>
<td></td>
<td>5.24%</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY
POSITION CLASSIFICATION AND FY 2014 SALARY PLAN UPDATE for CITY OF PEARLAND CITY COUNCIL July 22, 2013
Principal Project Components

- Organizational familiarization and job description review
- Position analysis and classification
- Identification of survey benchmarks
- Data collection, follow-up and verification of job matches
- Salary survey and data analysis
- Assignment of job classes to salary ranges
- Development of the recommended FY 2014 Salary Plans, implementation approaches and fiscal impact estimates
Position Analysis and Classification

- Review of current job descriptions
- Schematic of occupational job families, groups, FLSA designation

Result: No change, title change, merge, new class

- Assignment of individual positions to job classifications
- Quality assurance reviews with senior management
Results of Position Classification Process

<table>
<thead>
<tr>
<th>Classification Transaction</th>
<th>Total</th>
<th>% of</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N) No change</td>
<td>126</td>
<td>58%</td>
</tr>
<tr>
<td>(T) Title modification only</td>
<td>58</td>
<td>28%</td>
</tr>
<tr>
<td>(M,D) Merged into other class and deleted</td>
<td>32</td>
<td>14%</td>
</tr>
</tbody>
</table>

The summary indicates that 86% of the positions were assigned to the proper occupational job class, and many of those required only a modification to a uniform job title.
Salary Survey Methodology

- Competitors are those employers with whom the City competes to obtain and retain employees.
- Competitors and matches may differ by job classification.
- Executive (size-sensitive), local government-specific and non-government specific classifications were used as survey benchmarks.
- Structural comparison – Midpoint to Midpoint.
Salary Survey Methodology

- PSPC requested complete salary plans, organization charts and job descriptions as needed to facilitate accuracy of job matching.
- Published budget documents were also used for job matching.
- Occupations are being compared, not employees.
- Salary survey results do not suggest employees are under or overpaid.
- There is no such thing as a perfect job match due to differences in job duties, job scope (size-sensitivity) and organizational structures.
The following cities were identified by the City as survey comparators for all benchmark job classes:

- Baytown
- Deer Park
- Friendswood
- Houston
- League City
- Missouri City
- Pasadena
- Sugar Land
Additional Survey Resources

- Supplemental Combined Fire-Rescue Survey:
 - Carrollton
 - Grand Prairie
 - Houston
 - Irving
 - Lewisville
 - McKinney
 - New Braunfels
 - North Richland Hills

Additional Survey Considerations

- **Data aging**: Data from all sources aged forward from their effective date to the common date of September 30, 2013 (end of FY 2013) by 1.5%

- Salary increases other employers may award October 1, 2013 are not included or projected
Summary – FY 2014 Salary Survey Results

<table>
<thead>
<tr>
<th>Benchmark Job Classes</th>
<th>% of Sample</th>
<th>Average Variance</th>
<th>Range of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below (62)</td>
<td>61%</td>
<td>-11.7%</td>
<td>-22.5% / -5.2%</td>
</tr>
<tr>
<td>Comparable (34)</td>
<td>34%</td>
<td>-1.5%</td>
<td>-4.7% / +4.4%</td>
</tr>
<tr>
<td>Ahead (5)</td>
<td>5%</td>
<td>+11.4%</td>
<td>+5.7% / +22.5%</td>
</tr>
</tbody>
</table>

100 Salary Survey Benchmarks
- **“At market”** – Within +/-5% of the Prevailing Rates
- Competitive Employer for 39% of Benchmarks
- Not Competitive for 61% of Benchmarks
Competitive Compensation Plan

The City utilizes an open range single salary table for the majority of its job classes, and a separate salary table for rank and file police, fire, and EMS job classes.

We recommend continued utilization of the open range pay table with a 50% range width (Minimum to Maximum) and a uniform 2.5% between sequential salary range midpoints.

Salary range assignments were based on a market-based approach using salary survey results and current internal relationships as a guide, with salary range assignments placing the City in the top third of local public employers.

Benchmark job classes were placed as close to the prevailing rates for comparable job classes as was practical, by matching the City’s recommended salary range midpoints to the survey benchmark rates.

Non-benchmarks were linked to jobs that were surveyed.
<table>
<thead>
<tr>
<th>Range</th>
<th>Minimum</th>
<th>Midpoint</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>$30,113</td>
<td>$37,641</td>
<td>$45,169</td>
</tr>
<tr>
<td>31</td>
<td>$30,866</td>
<td>$38,582</td>
<td>$46,298</td>
</tr>
<tr>
<td>32</td>
<td>$31,637</td>
<td>$39,546</td>
<td>$47,456</td>
</tr>
<tr>
<td>33</td>
<td>$32,428</td>
<td>$40,535</td>
<td>$48,642</td>
</tr>
<tr>
<td>34</td>
<td>$33,239</td>
<td>$41,549</td>
<td>$49,858</td>
</tr>
</tbody>
</table>
Alternative Salary Plan
Implementation Approaches to Improve Competitiveness

• What does “at market” really mean?

• Pearland is the third largest city in the Houston area

• The recommended salary plan competitively places the City’s salary structure in the top third of market
For FY 2014 using market pricing placing the City within the top third of market, 223 employees’ salaries fall below the recommended salary range for their position, with a cost of $409,990 or 1.50% of payroll.

Affected employees would receive an average annual base salary increase of $1,839.

Police Civil Service. The survey indicates Pearland Police Officers are 5.75% below the top third of the local market. A 5.75% salary increase is recommended for this group (Police Officer through Captain) at a cost of $458,356 in base salaries. The projected cost of scheduled step increases for this group totals $142,958.
Recommended One-time Market Based Implementation Approach to Improve Competitiveness

Effective compensation plan design attracts and retains qualified employees. The Time in Position approach is shown below. Total projected costs include employees below Minimum ($409,990), a market based 5.75% across-the-board Police Civil Service salary increase ($458,356) and scheduled Police step increases ($142,958)

<table>
<thead>
<tr>
<th>Time in Position</th>
<th>Option 1 Increase</th>
<th>Option 2 Increase</th>
<th>Option 3 Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Than 1 Year</td>
<td>3.0%</td>
<td>2.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>1 – 5 Years</td>
<td>4.0%</td>
<td>3.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>6 -10 Years</td>
<td>5.0%</td>
<td>4.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Over 10 years</td>
<td>6.0%</td>
<td>5.0%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Total Projected Cost</td>
<td>$1,806,134</td>
<td>$1,620,748</td>
<td>$1,432,530</td>
</tr>
<tr>
<td>Cost as % of Payroll</td>
<td>6.61%</td>
<td>5.93%</td>
<td>5.24%</td>
</tr>
</tbody>
</table>
FY 2014 Salary Plan
Implementation Impact per Employee

- The average employee salary increase upon salary plan implementation, including adjustments to minimum, market-based, time in position and scheduled step increases ranges from $2,180 or 5.24% to $2,749 or 6.61% of their annual base salary
Final Notes

♦ The recommended approach placing the City's salary plan in the top third of market will permit the City of Pearland to consider significant factors relating to retention and its external competitiveness within the local market in FY 2014 and future years.
3. COUNCIL INPUT AND DISCUSSION: REGARDING THE TRAFFIC POLICY UPDATE. Ms. Andrea Broughton, Deputy City Engineer.
AGENDA REQUEST
BUSINESS OF THE CITY COUNCIL
CITY OF PEARLAND, TEXAS

AGENDA OF:	July 22, 2013	ITEM NO.:	Workshop Item No. 3
PREPARED BY:	Trent Epperson	PRESENTER:	Andrea Broughton
REVIEWED BY:	Mike Hodge	REVIEW DATE:	July 16, 2013

SUBJECT: Traffic Policy

EXHIBITS:
2. Traffic Policy – Ordinance 1301
3. Workshop Presentation

FUNDING:
- □ Grant
- □ Developer/Other
- □ Cash
- □ Bonds To Be Sold
- □ Bonds Sold
- □ L/P – Sold
- □ L/P – To Be Sold

EXPENDITURE REQUIRED:
AMOUNT BUDGETED:
ACCOUNT NO.:
ADDITIONAL APPROPRIATION REQUIRED:
ACCOUNT NO.:
PROJECT NO.:

To be completed by Department:
- Finance
- Legal
- Ordinance
- Resolution

EXECUTIVE SUMMARY

BACKGROUND

Staff is in the process of reviewing and revising the City’s Traffic Policy and the Traffic Calming Policy. The purpose of the revisions is to eliminate inconsistencies in the policies, consolidate the policies into one document, and ensure the policy is consistent with current practices.

The workshop will provide background on the current policies and update the City Council on the proposed changes

RECOMMENDED ACTION

Conduct the workshop.
RESOLUTION NO. R2002-89

A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF PEARLAND, TEXAS, APPROVING AND ADOPTING A TRAFFIC CALMING POLICY.

WHEREAS, the City Council realizes the necessity to establish a consistent procedure for reporting and responding to traffic related requests by citizens; and

WHEREAS, the City Council held a workshop with City staff on April 15, 2002, at which time recommendations for the City's traffic calming policy were presented; now, therefore,

BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF PEARLAND, TEXAS:

Section 1. That the City Council hereby adopts Traffic Calming Policy attached hereto as Exhibit “A”.

PASSED, APPROVED, AND ADOPTED this 10 day of JUNE, A.D., 2002.

TOM REID
MAYOR

ATTEST:

YOUNG LOVING
CITY SECRETARY

APPROVED AS TO FORM:

DARRIN M. COKER
CITY ATTORNEY
Traffic Calming Policy

June 2002

Table of Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Policies And Procedures</td>
<td>4</td>
</tr>
<tr>
<td>Speed Limits, Intersection Controls, Parking Restrictions, And Signage</td>
<td>6</td>
</tr>
<tr>
<td>Resident Roles In The Neighborhood Traffic Management Program</td>
<td>9</td>
</tr>
<tr>
<td>Traffic Calming Devices</td>
<td>11</td>
</tr>
<tr>
<td>Appendix A Traffic Calming Device Examples</td>
<td></td>
</tr>
<tr>
<td>Appendix B Examples of Drive Around Traffic</td>
<td></td>
</tr>
<tr>
<td>Appendix C Ranking Criteria</td>
<td></td>
</tr>
<tr>
<td>Appendix D Application and Survey Forms</td>
<td></td>
</tr>
</tbody>
</table>
PROJECT: TRAFFIC CALMING

DATE: June 2002

Submitted by:
Lt. R.J. Fraser, Patrol Division Commander, Pearland Police Department

Submitted to:
Alan Mueller, Deputy City Manager, City of Pearland

Resources:

City of McKinney, Texas Neighborhood Traffic Management Program
City of Garland, Texas Transportation Department
Institute of Transportation Engineers
Texas Manual on Uniform Traffic Control Devices (TMUTCD)
Pearland Police Department Speed Hump Project 1996

Alan Mueller, Deputy City Manager
Michael Ross, Former Project Manager
Jerry Burns, Director of Public Works
John Hargrove City Engineer
Andrew Gallagher, Assistant City Engineer
Samson Ukaegbu, Traff Data and Associates
INTRODUCTION

In 1996 the Pearland Police Department commissioned a study on the feasibility of implementing a Speed Hump installation program within the City of Pearland. While this program received numerous requests for installations, the program never materialized as cities across the nation were bombarded with negative feedback over similar programs. Alternative, yet ineffective, methods of slowing traffic, such as multi-way stop signs, were utilized in neighborhoods. These methods, while politically expedient, create hazards of their own.

Speed Humps received a great deal of criticism due to their ineffectiveness, in part due to improper installation; some criticism due to the increase in noise pollution; and some from emergency responders, who felt that their response times hampered their ability to save lives. In response to the criticism, cities across the country are spending money to remove the costly Speed Humps.

Since the proliferation of Speed Humps, and their subsequent departure, many cities have turned to a variety of methods for reducing the speeds and volumes of traffic in neighborhoods. These methods are commonly referred to as traffic calming.

There are a number of goals that a traffic-calming program would hope to achieve:

- Education of the public with respect to causes and appropriate solutions for neighborhood traffic problems.
- Explaining the roles of residents, resident representatives, and the City of Pearland in addressing traffic-related issues in neighborhoods and encourage neighborhood involvement as part of the solution to traffic related problems.
- Create clear policies and guidelines for submission of resident traffic requests and the processing of those requests by City staff.
- Discuss the advantages and disadvantages of potential solutions for traffic problems.

There are seldom-simple solutions to the traffic related problems that arise in our City. For example, the police department does not have the resources to issue citations for every speeding or parking violation that occurs. Additionally, the need for quick response times by first responders can be in conflict with local resident's desires to make speedy travel on a street impossible. These issues may be considered in a manner that will bring a balanced solution. This program intends to promote a framework through which the City of Pearland can develop constructive relationships with local residents and homeowner's associations for solving traffic-related problems in neighborhoods.
POLICIES AND PROCEDURES

The number of traffic related requests received by the City of Pearland increases each year in direct proportion to the increasing size of the city, both in area and population. Requests, which stem from traffic in residential areas, generally fall into three major categories:

1. A significant number of vehicles traveling on a residential street appear to be exceeding the legal speed limit.
2. Through-traffic has increased the volume of traffic on a residential street beyond a reasonable level.
3. Parked cars limit the use and accessibility of a street for residents and emergency vehicles.

The City of Pearland should adopt the following traffic management strategies recommended by the Institute of Traffic Engineers (ITE), for handling identified traffic concerns such as those mentioned above:

1. Establish, revise, and enforce general laws and ordinances pertaining to speed limits, intersection control, and parking regulations.
2. Educate residents to better understand the causes of traffic problems, potential solutions to those problems, and the advantages and disadvantages of implementing these solutions.
3. Install traffic control devices that provide specific regulatory, warning, or guide messages to motorists judiciously, and in conformance with the Manual of Uniform Traffic Control Devices.
4. Install traffic calming design features that manage the physical movement of vehicles or pedestrians within the roadway or within a neighborhood when the first three strategies have proven ineffective.

The report of traffic related issues have historically gone to the Police Department. Recently, requests for signage, signal alterations, and speed humps have been referred to the newly established Community Action Center for handling by the City Traffic Engineer or Appropriate staff. The CAC has been effective in routing requests, as well as insuring follow-up on a number of issues.

All requests for traffic-control or traffic-calming devices should be sent to the Community Action Center (CAC). The Community Action Center will provide information to the citizen regarding options available in responding to the inquiry. Additionally, the CAC will forward the information to the Police Department Patrol Commander and the Public Works Director. The CAC will continue to act as a liaison between City Departments and the requesting citizen(s).

The Police Department will coordinate targeted enforcement and make recommendations to the Public Works Director for the study of additional traffic-control devices.

The Public Works Director will coordinate the completion of any studies completed by the City Traffic Engineer, the proposal of ordinances for the placement of regulatory signs, placement of Traffic-Control Devices, and the placement of Traffic-Calming Devices.

In order to determine the proper measures to be taken in addressing a particular issue, the problem must be quantified with traffic volume counts, traffic speed assessments, accident records, and/or reports of problems from city personnel. Traffic volume and speed studies would be acquired from the City Traffic Engineer, while accident reports and citation activity are readily available from the Police Department.

If speeding were an identified problem, the second step would be to determine if an increased enforcement presence would be sufficient in addressing the issue. Additionally, neighborhood volunteers could distribute flyers in the neighborhood, informing residents of the specific problems that are occurring, the required correct behaviors, and the responsibility of each resident to use the streets responsibly. Sign installation should also be considered at this time. If the
actions described were not effective in reducing the speeding problem, the site could be eligible for installation of traffic-control or traffic-calming devices to attempt to reduce the speeds.

In general, for a specific traffic-control device to be approved, the following must occur:

1. The City Traffic Engineer will conduct a study to determine and propose the most effective devices, if any, for each area.

2. The City Traffic Engineer must determine where the traffic-control device should be located.

3. City Council must pass an Ordinance for the enforcement of the device.

In general, for a specific traffic-calming device to be approved, the following must occur:

1. The City Traffic Engineer will conduct a study to determine and propose the most effective devices, if any, for each area. The cost of engineering studies is to be shared equally by the City and the residents or association requesting the device(s). Exception: Minor studies such as stop sign installation studies or similar studies intended to result only in the erection of regulatory or warning signs.

2. The City Traffic Engineer must determine where the traffic-calming device(s) should be located.

3. Residents potentially affected by the installation must indicate that they support the proposed location of the traffic-calming device through a survey prepared by the Public Works Department and distributed by a neighborhood representative.
SPEED LIMITS, INTERSECTION CONTROLS, PARKING RESTRICTIONS, AND SIGNAGE

The City of Pearland has the authority to set speed limits, locate intersection controls, and designate areas for parking restrictions by enactment of an ordinance. City staff recommends traffic control devices, which are in compliance with the Texas Manual on Uniform Traffic Control Devices (TMUTCD), to council for enactment of an ordinance. The manual is a statewide set of standards for traffic control devices such as speed limits, stop signs, traffic signals, and other controls.

Speed Limits

According to the TMUTCD, the following factors should be considered in an engineering and traffic investigation to determine the proper numerical value for a speed zone:

1. Road surface characteristics, shoulder condition, grade, alignment, and sight distance.
2. The 85th-percentile speed and pace speed.
3. Roadside development and culture, and roadside friction.
4. Safe speed for curves and hazardous locations within the zone.
5. Parking practices and pedestrian activity.
6. Reported accident experience for a recent 12-month period.

The 85th-percentile speed is that speed which 85% of drivers do not exceed on a specific road. This factor is often used to re-evaluate speed limits on existing streets. The assumption in the TMUTCD is that most drivers are reasonable and drive at a safe speed on a roadway. (Only 15% of drivers exceed a "reasonable" speed.) City staff recommends speed limits to City Council based on these factors.

According to Texas Motor Vehicle Laws and City Ordinance, the speed limit on city streets is 30 miles per hour, unless there is a specific ordinance that designates a different speed limit on a street segment. The City of Pearland utilizes the following speed limits:

1. Local residential streets, 30 miles per hour.
2. Collector Streets and thoroughfares, 30 to 45 miles per hour.
3. In school zones during designated hours, 10 to 15 miles per hour lower than the posted limit.

The Texas Department of Transportation sets the speed limit on State-maintained roads within the city such as F.M. 518 (Broadway), F.M. 1128, F.M. 2234 (Shadow Creek Parkway), and State Highway 288. As the Texas Transportation Code establishes a 30 miles per hour speed limit on all roadways, unless otherwise posted, the City of Pearland does not install speed limit signs on all residential streets. These signs cost money to install and maintain, and signs detract from the aesthetic appeal of a neighborhood, and overuse of speed limit signs limits their effectiveness.

When a significant percentage of vehicles utilizing a certain roadway appear to exceed the speed limit, a traffic study can be conducted to determine if a speeding problem exists as well as the extent of the problem. For purposes of this study, a speeding problem is indicated on a residential street when the 85th-percentile speed is at least 10 miles per hour over the posted speed limit. (i.e. at least 15% of the drivers travel more than 10 miles per hour over the speed limit.) (TMUTCD)

Residents or Homeowners’ Associations may submit a request for a traffic study for a particular street to the Community Action Center. The City will pay for minor studies, such as those for Multi-way Stop Signs or Speed Limit Studies. Traffic studies will be conducted by the City Traffic Engineer. Requests will be handled in the order they were submitted as resources become available to conduct the study. After the City has conducted the study and determined that a street has a speeding problem, three steps will be taken to address this problem:
1. The Police Department will be informed of the problem and the possibility of increased enforcement of the speed limit will be discussed.

2. The Community Action Center will consult with neighborhood representatives to set up a Neighborhood Traffic Volunteer Program to keep the neighborhood informed about the traffic problems and what can be done to help remedy the situation.

3. The City Traffic Engineer will consider whether additional signage, such as speed limit or warning signs, would be appropriate to install at the site.

A street may be eligible for re-evaluation of the speed limit, especially if some road, or roadside, conditions are currently different than anticipated when the original speed limit was set or if there is a history of traffic accidents that appear to be related to the speed limit. The traffic study, which determines if an increase or decrease in the existing speed limit is warranted, will follow the guidelines in the TMUTCD. If warranted, City Council then must adopt an ordinance to establish a new speed limit.

Should the methods, described above, prove not to be successful in remedying the speeding problem, the installation of traffic calming devices, which are intended to physically reduce vehicle speed, may be considered at the site. Policies and guidelines for such installation are discussed later.

Intersection Controls

Intersection controls are intended to establish which vehicles have right-of-way through an intersection, improve traffic flows, and reduce intersection delays. Examples of devices, which are used for intersection control, include yield signs, stop signs, traffic signals, and turn prohibition signs. The TMUTCD has very specific guidelines and criteria for the proper use and placement of intersection controls. For instance, the TMUTCD states that **stop signs should not be used for speed control.**

Requests for installation of intersection controls may be submitted to the Community Action Center. Requests will be processed in the order they are received and as resources become available. The City Traffic Engineer will conduct a traffic study to determine if an upgrade of traffic controls is warranted at an intersection utilizing the criteria in the TMUTCD. The traffic study will include the measurement of traffic volumes into the intersection from all approaches, the analysis of the distribution of traffic throughout the day, and gathering accident records for the intersection.

If the City Traffic Engineer determines that changes to the controls at an intersection are warranted, an ordinance will be taken before City Council for their approval. If a traffic signal is warranted at an intersection, a four-way stop can be installed and/or maintained until funding for the traffic signal becomes available. (Traffic signals can cost over $100,000 per intersection.)

Parking Restrictions

Parking practices can occasionally cause traffic problems. For instance, traffic around schools can be problematic if parents double park or stand in driveways while dropping children off or picking them up. It sometimes becomes necessary to create zones with parking restrictions to keep streets open for emergency vehicles, fix sight visibility problems along a street, or restrict commercial operations from utilizing residential streets for parking. Parking restrictions on public streets are recommended by the City Traffic Engineer to the City for adoption through ordinance.

Most residential streets were designed to have on-street parking. Current City design standards allow a minimum pavement width of 27 feet in residential neighborhoods, which permits parking on both sides of the street and one through traffic lane in the center.

On-street parking has an added benefit of lowering traffic speeds on residential streets. Wide-open streets tend to encourage drivers to drive more quickly. On-street parking reduces the width of passable pavement and tends to slow drivers down because the parked cars appear to be obstacles. As long as on-street parking does not create a hazard for emergency vehicles, the City **does not discourage** on-street parking in residential areas.
Requests for parking restrictions can be referred to the Community Action Center. The City Traffic Engineer will examine the situation and consult with the Public Safety Department to determine if emergency service vehicles have been experiencing problems or potential problems exist.

Signage

Most traffic controls involve the use of signs (for example, stop signs, no parking signs, or speed limit signs). In addition to the regulatory signs mentioned previously, a number of warning signs and guide signs, such as “Dead End”, “No Outlet”, or street name signs, are also available for use by the City. The City of Pearland uses the guidelines of the TMUTCD for proper size, pattern, and location of all traffic signs.

As mentioned in the speed limit section of this chapter, the City of Pearland does not place speed limit signs on all streets and alleys because sign installation and maintenance are costly, signs can detract from the aesthetic appeal of a neighborhood, and the overuse of speed limit signs limits their usefulness. The same philosophy applies to the use of other signs, as well. The City Traffic Engineer must carefully examine each request for signage to determine if it complies with the TMUTCD.

Requests for traffic signage may be referred to the Community Action Center. Requests will be processed in the order they are received and as resources become available.
RESIDENT ROLES IN THE NEIGHBORHOOD TRAFFIC MANAGEMENT PROGRAM

Two of the goals of the Neighborhood Traffic Management Program are:

1. Educating the public with respect to causes of and appropriate solutions to neighborhood traffic problems, and
2. Encouraging residents to take an active role in achieving the solutions for neighborhood traffic problems.

Neighborhood traffic problems are often complicated issues that require a great deal of patience and hard work to solve. When the City determines that drastic measures are needed to attempt to solve a problem, the support of the affected residences will be needed before proceeding.

Neighborhood Traffic Volunteer Program

After the City of Pearland has conducted a traffic study to quantify the extent of a reported residential traffic problem, the Public Works Director or designee will meet with neighborhood representatives to go over the findings of the study and discuss the next steps toward addressing the problem. In most cases, one of those steps will be the creation of a Neighborhood Traffic Volunteer Program (NTVP).

The intent of the NTVP is to keep residents informed of potential traffic problems in their neighborhoods and to convey the message that everyone in the neighborhood has some responsibility for traffic conditions, good or bad. The main responsibility of neighborhood volunteers will be to pass out information about the specific traffic problems in the neighborhood and, if applicable, how neighborhood residents can help to correct the problems. To help set up this program, the Public Works Director or designee will act as a consultant to the neighborhood representatives. The City representative can provide prepared traffic literature and flyers for the neighborhood volunteers to distribute.

Surveys

In situations where enforcement, the neighborhood program run by volunteers, and any other signage or restrictions have not adequately corrected a traffic problem, a traffic calming device may be installed by the City to attempt to correct the problem. When streets or alleys are to be physically altered by a traffic-calming project, neighborhood representatives will pass out a survey prepared by the City of Pearland to potentially affected residents to determine the level of support for the proposal. The survey will detail what devices are under consideration, their proposed locations, potential advantages and disadvantages of the proposal, and funding options. Completed surveys will be returned to the City of Pearland for the proposal to be processed further. Survey requirements are discussed in under the Traffic Calming Devices section.

Requests for removal of traffic calming devices must go through the same survey process as requests for installation.

Funding for Installation of Traffic Calming Devices

The cost of installation of a traffic-calming scheme can be very expensive, ranging in cost from $1500 to over $20,000. When the City of Pearland has approved a traffic-calming project for attempting to address an identified traffic problem, one of the following project-funding mechanisms may be utilized:

1. Subject to annual appropriation, the City of Pearland will provide the funds for the project through its traffic-calming budget, or
2. If City traffic-calming funds have already been exhausted in the current budget year, the neighborhood may elect to pay for the entire cost of the traffic-calming scheme.
3. The City and neighborhood may agree to a cost sharing agreement for the project.

City funding limitations may at times affect the scheduling of approved traffic calming projects. If City funds have been exhausted in a given budget year, the neighborhood may elect funding
option number 2 or 3 above or may be put on a waiting list until City traffic calming funds are available for the project.
TRAFFIC CALMING DEVICES

Traffic calming devices physically alter a street or alley and make undesirable traffic behaviors difficult or impossible. There are numerous devices, which are in use around the world, such as speed humps, speed bumps, traffic islands, and chokers. Appendix A contains many examples of traffic calming devices, lists some device specific criteria which go beyond the general requirements of this chapter, addresses some advantages and disadvantages for each device, and gives approximate costs for each device. The City of Pearland receives numerous requests for installation of traffic calming devices such as speed humps. Traffic problems reported to the City of Pearland will be processed as detailed in the preceding sections. When the City of Pearland determines that the installation of traffic calming devices is the last remaining option for addressing an identified traffic problem, the policies established in this section will govern the installation of the devices.

Overview

Occasionally, residents request that traffic be diverted off a specific residential street. When all other options have been exhausted to address an identified traffic problem, the City of Pearland may consider the installation of appropriate traffic calming devices. Several factors should be considered prior to the installation of any device including, but not limited to, the following:

1. The impact of the device on street users including motorcyclists, bicyclists, and pedestrians;
2. The impact of the device on drainage patterns;
3. The anticipated impact of the device on vehicular speeds and volumes;
4. The potential impact on other streets or alleys from diverted traffic;
5. The potential impact on emergency response vehicles and street maintenance activities; and
6. The degree of support for the installation of the device.

It is important that devices installed in public streets not inflict damage to passing vehicles or cause drivers to lose control of their vehicles.

This policy is designed to provide reasonable opportunities for the installation of traffic calming devices in residential streets and alleys based upon the degree of support from the surrounding residents and the roadway conditions. The following sections provide detailed information on the eligibility of streets and alleys and procedures for the installation of traffic calming devices.

Eligible Streets

The first step in the device installation process is to determine whether a specific street is eligible for consideration. Streets meeting the following criteria may be considered for traffic calming device installation:

1. The streets is paved and constructed on dedicated public right-of-way.
2. The property adjacent to the street is either wholly or primarily residential.
3. The street is not adjacent to open space, parks, public school grounds, etc. where drive around problems are likely. (See Appendix B for examples of drive-around problems.)
4. The street is not designated as a primary emergency response route by Public Safety Departments.
5. The street is not designated as a thoroughfare or collector roadway on the City of Pearland Thoroughfare Plan.
6. There must be no more than one moving lane of traffic in each direction.

Streets that meet the five criteria listed above shall also meet one of the following volume and speed criteria to be eligible for traffic calming device installation:

1. The street should have a minimum average daily traffic of 1,500 vehicles per day, or
2. The 85th-percentile speed of vehicles traveling on the street should exceed the speed limit by at least 10 mph. (TMUTCD)

Location of Devices

Once a street or alley is determined to be eligible, the possible locations for traffic calming device installation are subject to the following conditions:

1. **Sight distance**

 Adequate sight distance must exist at the desired location to safely accommodate traffic operations after device installation. City Traffic Engineer staff will review the area included in the request and identify any areas in which installation would be excluded due to sight distance.

2. **Adjacent resident concurrence**

 A traffic calming device shall not be located within 100 feet, as measured along the right-of-way, of a property if the owner of that property objects to its placement at that location.

3. **Distance to driveways, alleys, streets, or other devices**

 Traffic calming devices shall, in general, be located at least 20 feet from the nearest driveway, and at least 50 feet from the nearest intersecting alley segment, or intersecting street.

 Spacing of devices will be determined by the City Traffic Engineer. Some device specific spacing criteria are listed in Appendix A.

4. **Grade of street or alley**

 Some devices, such as speed humps, should not be installed on steep streets. In general, the grade of a street or alley approaching these devices must be less than 8%.

5. **Street alignment**

 Traffic calming devices should not be installed in locations where horizontal or vertical curves could cause a vehicle traveling at a prudent speed to lose control when traversing the device.

6. **Drainage**

 Traffic calming devices invariably have a negative effect on drainage through the street or alley in which they are installed. Care must be taken in locating a device to ensure that the device does not cause an existing drainage problem to worsen or create an unacceptable drainage problem.

Survey Procedure

The degree of resident support is a major factor in the consideration of traffic calming device installation. A survey of the homes within a specified survey area must be submitted to the City demonstrating the required degree of resident support.

Survey Area

- The survey area shall include all homes whose front, rear, or side yard adjoins the street or alley segment in which a proposed device would be located. The survey area will also include houses that adjoin streets onto which traffic may be diverted to if the proposed traffic-calming scheme is installed. The Public Works Department will review the request and determine the required survey area.
- Only single-family, duplex, triplex, or four-plex homes shall be included in the survey response.

Survey Form

- The City will provide a survey form for the collection of signatures. This form will include a brief description of the request, traffic operation considerations, and instructions to the residents.
- For each street address included in the survey area, the following information must be included: Street address, printed name of resident, signature of resident, and preference (SUPPORT, OPPOSE, NO PREFERENCE).
- In order to provide each surveyed home the same level of input, only one resident signature per home will count in the survey.
- Up to three months shall be permitted for the collection of necessary signatures and survey submission to the City. If the necessary number of signatures is not collected within this time period, a new survey must be begun.

Required Percent of Support

- At least 85% of the homes in the survey area must indicate support of the proposed traffic-calming scheme. Only the "Support" preferences on the survey will be included in calculating the required support level. The "oppose" and "no preference" indications will not be used in this calculation.
- City staff will review the submitted survey to verify that the required survey area was included and to determine that at least 85% of the addresses support the installation.

Installation Approval

In order for the installation of a traffic-calming project to occur on a street, the following actions must occur:

1. When a sufficient number of "support" signatures have been obtained, the completed survey should be submitted to the Community Action Center.
2. When a submitted survey has been verified as meeting the required neighborhood support level, the Public Works Department will place the street on a list of approved traffic calming projects and will mail the residents in the survey area a letter advising of the approved installation request. This letter will provide an estimate of the cost of the project and explain the process for receiving City funding for the project and the resident funding option.
3. The City Manager, or his designee, will rank the list of approved traffic calming projects. Funds from the City's traffic calming budget will be allotted to the projects according to the approved rankings and until the funds have been depleted. If funds are available for a project in the City's traffic calming budget, the project will be scheduled for construction. If no funds are available, the project will be placed on a waiting list for funding. If the residents elect to pay for the installation, then upon the City's receipt of the full amount of the estimated project cost from the neighborhood representative, the project will be scheduled for construction. A sample ranking Criteria may be found in Appendix C.
4. The cost for each traffic-calming scheme will be based on the actual cost for a typical installation, including any necessary pavement markings and/or signs. The cost will be established by the Engineering Department and will reflect current costs. Appendix A contains a number of typical traffic calming devices and lists the approximate cost of each device.
5. If an approved traffic-calming project has been on the waiting list for more than one year at the time funds become available, a letter will be sent out to the residences in the survey area giving an approximate schedule of construction. In case resident support for the project has diminished since the project was initially approved, residents within the survey will have 30 days from the date of the notification letter to file written objections, which shall be evaluated by the Public Works Director before installation of the project.
Temporary Devices

Once the installation of a device has been approved, a temporary device may be utilized to measure the effectiveness of a permanent installation. Water-filled barriers may be utilized for a period of at least 90 days. While these barriers are not as aesthetically suited to the neighborhood as the permanent installation, they can prevent the expensive installation of an ineffective device.

Appeals or Variances

The Public Works Director, or his designee, shall handle all appeals and may consider requests for unusual conditions that do not fall within these guidelines or for additional consideration of locations that failed to satisfy all of the included requirements. The following general guidelines will be used:

1. Requests for appeals or variances shall be submitted to the Community Action Center and shall specify why an appeal or variance is being requested.
2. An appeal or variance request will be forwarded to the City Manager for review.
3. The City Public Works Director will process a formal response to the appeal or variance request. The decision of the City Manager shall be final.

Removal and Alteration of Traffic Calming Devices

The process for requesting traffic calming device removal or alteration is the same as the process for installation. A survey must be submitted to the City with at least 85% of the homes in the survey area supporting the requested removal or alteration. Funding for the removal/alteration will be handled in the same manner as a new installation.

Design Standards and Policy Procedures

The Engineering Department shall prepare and maintain design standards for traffic calming devices installed through this policy. This policy will be reviewed by City Staff in two-year intervals with the first review being performed one year after the installation of the first device installed under the provisions of this policy. Review of this policy may also occur prior to the scheduled review date at the discretion of the City Council and staff.
Appendix A

Traffic Calming Devices
RUMBLE STRIPS

Description:

- Dots or strips are glued to the pavement to create a strip that causes the vehicle to rumble as it traverses through them.

Purpose:

- To alert motorists to unusual conditions ahead.

Cost:

- Highly variable. Approximately $1,000 - $5,000 per location.

Locations:

- 30 mph posted speed = 200' in advance.
- 40 mph posted speed = 325' in advance.

Positive Aspects:

- Vehicles may be slowed down up to 5 mph.
- Driver's attention is alerted to heighten safety.
- Low cost installation than can easily be removed or changed.

Negative Aspects:

- Very high level of noise pollution for adjacent residents.
- High maintenance is required to reattach dots or strips to the pavement.
NARROWING LANES

Description:
- Striping is used to create narrow 10 feet wide lanes. This gives drivers the feel of a narrow street that does not lend itself to high speeds.

Cost:
- The costs vary depending on the length of street, but are not anticipated to exceed $3,000 per mile.

Positive Aspects:
- Changes can be quickly implemented.
- The striping can be easily modified if paint is used.
- Speed may decrease and safety is improved through the provision of positive guidance to drivers.

Negative Aspects:
- Would increase regular maintenance.
- Residents do not always perceive striping as an effective tool for speed reduction.
- Cost of resurfacing residential streets will increase.
STOP SIGN REVERSAL

Description:
- Two stop signs are placed at four legged intersections in the City. The signs are placed on the lower volume approaches. If the volumes are balanced, the stop sign locations could be switched to stop the other street. The cost for switching stop signs would be less than $500 per location.

Positive Aspects:
- Changes can be easily made.
- Traffic speed may be reduced in the vicinity of the stopped approaches.

Negative Aspects:
- The speeds may increase on the unstopped approaches.
- There is high potential for violation of stops unless enforced periodically.
- Not always favorable to residents immediately adjacent to new stop sign locations.
- Potential for rear end accidents is increased in the short term.
CHOKERS

Description:

- Narrowing of a street at an intersection, mid-block or a segment of a street in order to reduce width of the traveled-way by construction of a wider sidewalk or landscape strip.

Cost:

- Highly variable. Approximately $5,000 - $20,000 per location.

Positive Aspects:

- Slight slowing is normally the result.
- Shorter pedestrian crossing distances and better motorist-pedestrian visibility of each other.
- Creates added streetscape area for pedestrians and/or landscaping.
- Can discourage truck entry.
- Allows signs to be placed closer to driver's cone of vision.

Negative Aspects:

- Potential obstacle for motorist to run into.
- May impede bicycle mobility and safety.
- Can impede legitimate truck movements.
- May require reworking of surface drainage.
GATEWAYS

Description:

A special entrance feature, similar to a choker, that narrows a street at the intersection in order to reduce width of the traveled way. This is not a gate. Chokers are usually located within the block or at intersections. Gateways are considered more dramatic and provide identity to a neighborhood. The exact configuration of the gateway treatment will depend upon the location of the gateway, i.e., conflicts with driveways. Medians can also be added to street to slow turning movements and enhance the street.

Cost:

- Highly variable. Approximately $5,000 – $15,000 per location.

Positive Aspects:

- Creates an identity to a neighborhood.
- Creates added streetscape area for landscaping or monuments.
- Can discourage truck entry.
- Allows signs to be placed closer to driver’s cone of vision.

Negative Aspects:

- Can impede legitimate truck movements.
- Increased maintenance costs.
INTERSECTION CHANNELIZATION

Description:

- T-intersections are channelized so that vehicles are not traveling in a straight path. This has the effect of slowing vehicles down.

Cost:

- Approximately $30,000 per location.

Positive Aspects:

- Slows vehicle speeds.
- No significant impedance of fire and transit service.

Negative Aspects:

- Landscaping and signing/striping maintenance will be required.
- Loss of on-street parking will occur.
MEDIAN BARRIER

Description:

- A physical barrier on a non-local street which can effectively eliminate local street straight-through and left turn traffic across the non-local street. A median barrier can take many forms, ranging from a closely-spaced row of flexible delineator posts to a series of pre-cost curb sections affixed to the pavement to a temporarily-placed but immovable 3' high concrete barrier (K-Rail) to an asphalt/concrete curbed island with or without a decorative landscaping and surface treatment. Costs vary widely among these options. The device is also known as a "wom."

- A full median with no breaks can also be used to prohibit all left turns.

Cost:

- Highly variable. Approximately $5,000 to $20,000 per location.

Positive Aspects:

- Makes the intersection safer by reducing the number of conflicting movements.
- Reduces local street volumes.
- Negates the possible need for future expensive traffic signal.

Negative Aspects:

- The physical barrier may shift traffic to other locations where left turn opportunities exist.
- This tool may inconvenience local residents who will be forced to drive longer more circuitous paths to reach their destination.
NECK DOWNS

Description:
- Physical curb reduction of road width at intersections by widening of street corner to discourage cut through traffic and to help define neighborhoods.

Cost:
- Highly variable. Approximately $10,000 to $30,000 per location.

Positive Aspects:
- May be aesthetically pleasing, if landscaped.
- Good for pedestrians due to shorter crossing.
- Can be used in multiple application.

Negative Aspects:
- Increased landscaping maintenance.
- Landscaping may cause sight distance problems.
ONE WAY STREET(S)

Description:
- One or more streets designated as "one-way".

Cost:
- Approximately $1,000 to $5,000 per location.

Positive Aspects:
- May reduce total volume on subject street.
- Adds vehicle capacity to a street.
- Safety is inherently greater on one way segments, but care must be taken to handle intersection treatments properly.

Negative Aspects:
- Can encourage increased speeds.
- Adverse travel distance results for local residents.
- May shift diverted traffic to another street.
RAISED INTERSECTIONS

Description:
- A raised plateau of roadway where roads intersect. The plateau is generally about 4" higher than the surrounding streets. This application is best for locations with high pedestrian volumes with significant safety concerns related to traffic speeds.

Cost:
- Approximately $50,000 to $100,000 per location.

Positive Aspects:
- Effective speed control.
- Aesthetically pleasing if well designed.
- Good pedestrian safety treatment.
- Can be used on higher or lower volume streets.

Negative Aspects:
- Expensive to construct and maintain.
- Affects emergency vehicle response time.
TRAFFIC CIRCLE

Description:
- A small circular island placed in the center of an existing local street intersection. Some may also refer to this device as a "roundabout".

Cost:
- Approximately $10,000 to $20,000 per location.

Positive Aspects:
- A noticeable reduction in speeds.
- Reduces accident potential.
- Under certain conditions capacity can be increased.
- Can be used instead of stop signs.

Negative Aspects:
- Required safety signing may detract from its aesthetic quality.
- Pedestrians and bicyclists must adjust to less traditional crossing patterns.
- Some parking may be lost on approaches to accommodate vehicles' deflected paths.
- May increase accidents until drivers become accustomed to change.
SERPENTINE

Description:
- A narrow serpentine road is created for several hundred feet using curbs and landscaping.

Cost:
- Approximately $50,000 to $75,000 per location.

Positive Aspects:
- Reduces vehicle speed.
- May reduce through traffic volumes.

Negative Aspects:
- Increased maintenance for landscaping and pavement.
- Significant loss of on-street parking.
- Most residents would have driveway affected by this type of installation.
- Fire and transit services would be affected.
SPEED HUMPS

Description:
- Mounds of paving material placed across a roadway for the purpose of causing motorists to reduce their operating speed while driving on the roadway.

Cost:
- Approximately $1,500 to $3,000 per hump.

Locations:
- Short block, single mid-block hump usually adequate.
- Longer blocks and continuous street sections, two or more humps spaced approximately 200 feet to 600 feet apart.

Positive Aspects:
- Reduces speed.
- Can cause traffic to shift to arterial system and no longer cut through the neighborhood.

Negative Aspects:
- Can cause traffic to shift to parallel residential streets.
- Affects emergency response times.
- Contents of vehicle can be jarred.
- Increase in noise adjacent to hump.
TURN RESTRICTION USING DELINEATORS

Description:
- Delineators glued or dowelled to the pavement surface are used to create a barrier to prevent vehicles from making certain movement in and out of a local street. The delineators are typically placed along the centerline of the major collector street.

Cost:
- Approximately $1,000 to $10,000 depending on the number and types of delineators.

Positive Aspects:
- Reduces through volume of traffic.
- Reduces rear-end and left-turn accidents at major or collector street intersection with local streets.
- Low cost installation that can easily be removed or changed.

Negative Aspects:
- Little reduction in traffic speeds.
- Could potentially make it more circuitous for residents to reach their destinations.
- May divert traffic onto adjacent streets.
TWO LANE ANGLED SLOW POINT

Description:
- Three islands are used to create an angled path of travel for vehicles. The effect of angling the traffic path slows vehicles down. The volume of traffic may well be unaffected. The islands adjacent to the curb are typically landscaped.

Cost:
- Approximately $10,000 to $20,000 per location.

Positive Aspects:
- Slows vehicle speeds.
- Fire and transit vehicles are not impeded significantly.

Negative Aspects:
- Loss of on-street parking.
- Landscaping and signing/striping has to be regularly maintained.
CUL-DE-SAC

Description:
- Complete closure of a street either at an intersection or at a mid-block location.

Cost:
- Approximately $50,000 per location.

Positive Aspects:
- Very effective at eliminating most of the previously speeding traffic on the block.
- Very effective at reducing volumes.
- Can be landscaped for an attractive effect to convey street discontinuity.
- Mid-block type can be effectively used where abutting land uses change.
- Improved traffic safety.

Negative Aspects:
- Can negatively affect response times for emergency service.
- In large neighborhoods, can shift a problem elsewhere unless a strategic pattern of cul-de-sacs are used.
- Can generate confusion on the part of users unless signed carefully.
- May inconvenience local residents.
DIAGONAL DIVERTER

Description:

- Barriers between diagonally opposite corners of a 4-legged intersection, thus creating two unconnected L-shaped intersections.

Cost:

- Approximately $10,000 to $30,000 per location.

Positive Aspects:

- Reduces speed.
- Can achieve a 20% to 70% reduction in volumes.
- Reduces accident potential by eliminating conflicting traffic movements.
- Advantage over complete street closure (cul-de-sac) in that it has a lesser impact on circulation, as it actually creates no dead-end streets. Local residents and service vehicles may view this as a benefit in that their routes can be more direct.
- Can be attractively landscaped.

Negative Aspects:

- In a large neighborhood, can shift problems elsewhere unless a strategic pattern of diverters is used.
- May inconvenience local residents who are forced to drive longer more circuitous paths to/from their homes.
- Can generate confusion on the part of users unless signed carefully.
- May inconvenience local residents.
HALF CLOSURES

Description:
- The street is partially closed to traffic by the construction of a physical barrier at the entrance to the neighborhood to reduce cut through traffic.

Cost:
- Approximately $15,000 per location.

Positive Aspects:
- Reduces cut through traffic.
- May reduce traffic speeds.

Negative Aspects:
- May require additional maintenance.
- Could be violated, especially in the late evening.
MID-BLOCK ROAD CLOSURE

Description:
- Cut-de-sacs are created by closing the street mid-block using a landscaped island. Pedestrian access is provided across the island.

Cost:
- Approximately $20,000 to $50,000 per location.

Positive Aspects:
- Reduces through traffic volumes.
- Reduces speeds in the vicinity of the closure.

Negative Aspects:
- Traffic may be diverted onto adjacent parallel streets.
- Maintenance of the landscaped areas will have to be provided for.
- Emergency access will be impeded.
- Local residents may be forced to drive more circuitous routes.
- There is a loss of on-street parking.
Appendix B

Examples of Drive Around Traffic
Drive-around traffic could be a potential problem with some traffic calming schemes. Two examples have been provided to illustrate the potential problems.

In both examples, the drive-around problem would not be completely fixed by placing a post at the edge of the traffic calming device. There would still be open space to drive through to get around the device.

In general, drive-around should not be a problem on streets with standard 6-inch curbs. However, in locations that have so-called “mountable” curbs (curbs that can be driven on) or along streets and alleys that have no curbs at all, the potential for drive-around should be considered in any traffic calming design.
Appendix C

Ranking Criteria
APPENDIX C
Ranking Criteria

The Ranking Sum is determined by adding the total points awarded based on the following ten criteria. The street segment yielding the highest numerical value from the summation will be considered to have the highest priority. The street with the earliest application date will have the highest priority among streets with the same ranking summation value.

1.) **SPEED**

<table>
<thead>
<tr>
<th>85th percentile speed is above the posted speed limit by:</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 9 mph</td>
<td>1</td>
</tr>
<tr>
<td>10 – 12 mph</td>
<td>2</td>
</tr>
<tr>
<td>12 – 13 mph</td>
<td>3</td>
</tr>
<tr>
<td>14 – 15 mph</td>
<td>4</td>
</tr>
<tr>
<td>over 15 mph</td>
<td>5</td>
</tr>
</tbody>
</table>

2.)

<table>
<thead>
<tr>
<th>Vehicles per day</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 1500</td>
<td>1</td>
</tr>
<tr>
<td>1500 – 1600</td>
<td>2</td>
</tr>
<tr>
<td>1600 – 1700</td>
<td>3</td>
</tr>
<tr>
<td>1700 – 1800</td>
<td>4</td>
</tr>
<tr>
<td>over 1900</td>
<td>5</td>
</tr>
</tbody>
</table>

3.) **Reported Accident (Except Auto/Pedestrian)**

(Accidents along segment or within intersections within the segment but not including accidents at the terminal intersections unless the terminal intersections are interior to the neighborhood. Utilizes the most current 12 months of available records.)

1 point per accident.
4.) **Reported Auto/Pedestrian Accident**

(Accidents along segment or within intersections within the segment but not including accidents at the terminal intersections unless the terminal intersections are interior to the neighborhood. Utilizes the most current 12 months of available records.)

2 points per accident.

5.) **Percent Residential Land Uses**

(Deed restricted vacant land will be counted towards the use to which it is restricted. All other vacant land will not be included in the total.)

<table>
<thead>
<tr>
<th>Percent Residential</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 20</td>
<td>1</td>
</tr>
<tr>
<td>20 – 40</td>
<td>2</td>
</tr>
<tr>
<td>40 – 60</td>
<td>3</td>
</tr>
<tr>
<td>60 – 80</td>
<td>4</td>
</tr>
<tr>
<td>80 – 100</td>
<td>5</td>
</tr>
</tbody>
</table>

6.) **Percent of Residential Lots Front Facing (as opposed to side abutting)**

<table>
<thead>
<tr>
<th>Percent Front Facing</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 20</td>
<td>1</td>
</tr>
<tr>
<td>20 - 40</td>
<td>2</td>
</tr>
<tr>
<td>40 - 60</td>
<td>3</td>
</tr>
<tr>
<td>60 - 80</td>
<td>4</td>
</tr>
<tr>
<td>80 - 100</td>
<td>5</td>
</tr>
</tbody>
</table>

7.) **Percent of Traffic which is Truck Traffic**

(three axles or more)

<table>
<thead>
<tr>
<th>Percent Truck Traffic</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 20</td>
<td>1</td>
</tr>
<tr>
<td>20 - 40</td>
<td>2</td>
</tr>
<tr>
<td>40 - 60</td>
<td>3</td>
</tr>
<tr>
<td>60 - 80</td>
<td>4</td>
</tr>
<tr>
<td>80 - 100</td>
<td>5</td>
</tr>
</tbody>
</table>
8.) **Number of Institutions**
(schools or parks within 1 lineal block on either end of the subject block; hospitals, churches, licensed day care, or other institutional uses located on the block of the proposed traffic calming device)

1 point per institution – Maximum of 3 points.

9.) **Absence of sidewalks on subject block.**

Points awarded: 1 Point

10.) **Evidence of Support**
Percent of residents, businesses, and landowners living in or owning property facing or having lot frontage on the street block on which traffic calming device is proposed to be located which have indicated support for the proposal through submittal of letter or petition signature.

<table>
<thead>
<tr>
<th>Percent Supporting</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 85</td>
<td>0</td>
</tr>
<tr>
<td>85 – 90</td>
<td>1</td>
</tr>
<tr>
<td>90 – 95</td>
<td>2</td>
</tr>
<tr>
<td>95 - 100</td>
<td>3</td>
</tr>
</tbody>
</table>

C - 3
Appendix D

Application and Survey Forms
I. Request for Traffic Management
The following is a request for Neighborhood Traffic Management. Each request must contain the completed information as indicated in parts II and III. The request will be processed according to the procedures detailed in the Neighborhood Traffic Management Program.

II. Street-Study Information
Each request must provide the name of the street on which traffic management is requested, as well as the boundaries for the street segment. Traffic studies will only be conducted within the boundaries indicated. Please use intersecting streets for boundary limits rather than block ranges.

Requested street: __

Boundary Area: From: ______________________________________

To: __

III. Contact Person Information
Each request must provide a contact person, who lives on the requested street, within the area boundary. The contact person will receive all correspondence and be responsible for gathering evidence of support when requested.

Name: __

Address: __

 Pearland, Texas Zip Code: __________ Ph: __________

Homeowner's Association: ________________________________

I agree to be the contact person for the above request, and I understand that a request may not be automatically withdrawn once a traffic study determines the street to be eligible for traffic-calming devices.

Signature: ___ Date: ____________
City of Pearland
Neighborhood Traffic
Management Program
3519 Liberty Dr.
Pearland, TX 77581
281-652-1600

Traffic Calming Device
Survey Form

The party listed below has requested the installation of traffic calming devices within your neighborhood. The locations and types of traffic calming devices are listed below. The City of Pearland and your neighbors recognize the impact that these devices may have on the aesthetic qualities of your neighborhood. We are asking for your input regarding installation of these devices. Please indicate whether or not you support this installation in the space provided below and return this survey to the listed address. Only one response per household is required. Your response is sincerely appreciated.

Devices to be Installed:

Type of Device: ___________________ Location: ___________________
Type of Device: ___________________ Location: ___________________
Type of Device: ___________________ Location: ___________________

Please check one of the following boxes indicating your opinion of the installation:

I support the installation of the listed devices: []
I do not support the installation of the listed devices: []
I have no opinion regarding the installation: []

Signature: ______________________ Date: __________________
Address: ______________________
Homeowner [] Renter []

Please return this form to the listed address:
Name: ________________________
Address: ______________________
Pearland, Texas Zip Code: ________ Ph: ________
Homeowner's Association: ______________________
A hypothetical example of how a survey area would be developed for a proposed traffic calming project has been provided in this section. The proposed project is the installation of two speed bumps on a section of Street D to lower traffic speeds. The following figure illustrates the situation:

Houses that lie along the section of Street D where the speed bumps will be installed will be included in the survey area because these residents will be directly affected by the installation (both positive aspects, such as lower speeds, and negative aspects, such as hump noise). Sections of Streets A, B, C, and F will also be included in the survey area because of the potential for traffic to be diverted from Street D onto those other streets if drivers attempt to avoid the speed humps. Residences on Cul-de-Sac E will not be included in the survey area because their houses do not lie along the traffic-calmed street and traffic will not be diverted to the cul-de-sac.
ORDINANCE NO. 1301

AN ORDINANCE OF THE CITY COUNCIL OF THE CITY OF PEARLAND, TEXAS, ADOPTING A TRAFFIC POLICY AND AMENDING SECTION 29-206 OF CHAPTER 29, ARTICLE XI, TRAFFIC CONTROL DEVICES, OF THE CITY OF PEARLAND CODE OF ORDINANCES, HAVING A SAVINGS CLAUSE, A SEVERABILITY CLAUSE, AND A REPEALER CLAUSE; PROVIDING FOR CODIFICATION.

BE IT ORDAINED BY THE CITY COUNCIL OF THE CITY OF PEARLAND, TEXAS:

Section 1. That the City of Pearland Traffic Policy, attached hereto as Exhibit “A”, is hereby adopted.

Section 2. That Chapter 29, Article XI, Traffic Control Devices, of the City of Pearland Code of Ordinances, is hereby amended to read as follows:

“Section 29-206. General powers.

The City Manager or his designee, utilizing the City’s Traffic Policy, shall place and maintain traffic-control signs, signals and devices when and as required under this chapter to make effective the provisions of this chapter, and may place and maintain such additional traffic-control devices as deemed necessary to regulate traffic under this chapter or state law or to guide or warn traffic. It shall be the duty of the City Manager or his designee to ensure that any decision pursuant to this Section is made in accordance with the Texas Manual on Uniform Traffic Control Devices.
ORDINANCE NO. 1301

Section 3. Savings. All rights and remedies which have accrued in favor of the City under this Chapter and amendments thereto shall be and are preserved for the benefit of the City.

Section 4. Severability. If any section, subsection, sentence, clause, phrase or portion of this ordinance is for any reason held invalid, unconstitutional or otherwise unenforceable by any court of competent jurisdiction, such portion shall be deemed a separate, distinct, and independent provision and such holding shall not affect the validity of the remaining portions thereof.

Section 5. Codification. It is the intent of the City Council of the City of Pearland, Texas, that the provisions of this ordinance shall be codified in the City's official Code of Ordinances as provided hereinafore.

PASSED and APPROVED ON FIRST READING this the 25th day of September, A.D., 2006.

TOM REID
MAYOR

ATTEST:

YOUNG LORING, TRMC
CITY SECRETARY

APPROVED AS TO FORM:

DARRIN M. COKER
CITY ATTORNEY
ORDINANCE NO. 1301

PASSED and APPROVED ON SECOND AND FINAL READING this the 9th day of October, A. D., 2006.

TOM REID
MAYOR

ATTEST:

YOUNG KORFIN, TRMC
CITY SECRETARY

APPROVED AS TO FORM:

DARRIN M. COKER
CITY ATTORNEY
City of Pearland
Traffic Policy

The City of Pearland has adopted these policies and procedures to provide a uniform methodology to address and mitigate unacceptable traffic conditions on the city’s public streets. Communication, cooperation and involvement in fostering consensus in the identification of traffic-related issues and their resolution are an integral component of these policies and procedures. All actions taken under this policy should be in accordance with the Texas Manual on Uniform Traffic Control Devices. This policy applies only to streets controlled by the City of Pearland. Issues involving streets controlled by the State of Texas will be coordinated through the City Engineer’s office.

I. TRAFFIC REVIEW COMMITTEE

The City Manager shall appoint a City Traffic Review Committee comprised of the Traffic Director, Chief of Police, City Engineer, and Director of Public Works or their designee. The Traffic Review Committee shall serve as a decision making body for issues falling under the Traffic Procedure (Appendix I). These include:

- Requests for no parking along certain residential streets
- Requests to limit cut through traffic
- Requests for crosswalks
- Requests for children at play signage
- Requests for other advisory or advanced warning signage
- Requests to limit speeding
- Requests to lower posted speed limits
- Requests for stop signs
- Requests for traffic signals
- Requests for traffic calming devices

The Committee shall serve as an advisory body to the City Council for issues that do not fall under the Traffic Procedure. These include, but are not limited to, requests for right-turn or left-turn lanes, u-turns, Hazardous Materials Routes, and Evacuation Routes.

The functions of the Traffic Review Committee shall include the following:

- Review all traffic engineering studies, analysis and reports relative to requests for traffic control devices or actions.
- Determine, based on the Traffic Procedure, if requests for traffic control devices or actions meet the minimum warrant, criteria or standards of the City for implementation of the requested device(s) or action(s).
- Make recommendation to the Traffic Director for consideration of those requests for traffic control devices or actions that fall under the Traffic Procedure; the Traffic Director will determine whether each request can be handled at the staff level, or should be sent to City Council for review.
- Notify the party initiating the request that:
 - the request has been approved by the Traffic Review Committee and will be recommended to the Traffic Director; or,
- the request has not met the city’s warrants, criteria or standards for the requested traffic control device or action and has been denied by the Traffic Review Committee. The staff report justifying the Traffic Review Committee’s denial will be attached to the notice to the initiating party. Staff will also communicate that the initiating party may appeal any request denied by the Traffic Review Committee to City Council within fifteen (15) days of the Traffic Review Committee action.

- In cases that do not fall under the Traffic Procedure, complete the necessary studies, analysis, and reports to provide the Traffic Director and City Council with sufficient information to make an informed decision.

- Implement or adjust times for school zones as requested by an Independent School District.

The procedure for intake, routing, and tracking traffic issues and concerns is represented by the flowchart in Appendix II.

II. INITIATING A TRAFFIC ENGINEERING STUDY

The City Engineer may conduct a Traffic Engineering Study (“traffic study”) on a street or intersection when:

- City staff has been contacted and advised of a traffic problem or dangerous condition. To maintain a chain of communication, the initiating party may be asked to submit the request in brief, written form. A petition to initiate a conventional traffic study will not normally be required.

- City Council has directed staff to address a traffic issue.

- Another agency requests the City’s participation in a cooperative traffic study.

- City staff initiates a traffic study.

All Traffic Engineering Studies should be coordinated by the City engineer.

If an issue surrounding the consideration of implementation of a traffic control device or similar action has been addressed by a prior traffic study, the initiating party will be advised of the results of the previous study and that no further action will be taken by City staff on the issue unless or until there has been a recognizable change in area conditions or traffic characteristics.

If a traffic control issue is remedial (missing sign, faded pavement legends, traffic signal malfunction, burned out street light etc.), or regarding parking restrictions, or the need for more signs or striping for traffic calming or information; then the Director of Public Works may take the appropriate corrective action, advise the initiating party of his action and place a memorandum in the Traffic Database describing the corrective action.

The City Engineer may decline to conduct a traffic study if:

- Any requested action is in conflict with laws of the State of Texas or other similar City policy.

- Any requested action has been the subject of a prior traffic study.
- Any requested action is not directly related to traffic and transportation engineering practices.
- Any requested action, as determined by the Traffic Review Committee, does not represent the best interest of the City.

III. TRAFFIC ENGINEERING STUDY
The traffic study is a five part procedure and may, depending upon the nature of the issue, evaluate:

- **Street Characteristics**
The traffic study will review the existing street or intersection characteristics to include:
a) Street width, improvements, alignment and lighting.
b) Existing traffic control.
c) Sight distance restraints, if applicable.
d) Development and access characteristics.

- **Traffic Characteristics**
The traffic study will measure traffic characteristics applicable to the initiating request, which may include any or all of the following:
a) Directional 24-hour weekday traffic counts (mechanical).
b) Directional weekday peak hour vehicle and pedestrian counts (manual).
c) Directional "through" traffic surveys.
d) Directional weekday peak hour radar speed zone surveys or 24-hour Speed Profiles. The radar survey will generally measure the speeds of 100 samples. The Speed Profile will measure the speed of all vehicles on the study street for a 24-hour or longer period.
e) Diagram and review the characteristics of all police-investigated accidents occurring at the study location for a 1-3 year period.
f) Traffic composition surveys (i.e.: commercial vehicle by number of axles vs. conventional passenger vehicles).

- **Data Evaluation**
The traffic study data is compiled into a statistical format and applied to recognize engineering warrants, criteria and standards. Warrants, criteria and standards are not considered "absolutes" in the determination of traffic control need but are intended to provide guidelines, in conjunction with engineering judgment for the Traffic Director, Traffic Review Committee and the City Council to compare the conditions at a study location with those conditions that have necessitated traffic control installations at other similar locations to successfully resolve traffic issues.

- **Traffic Report**
Upon completion of the traffic study, City engineering staff for presentation will prepare a report to the Traffic Review Committee. The initiating party will be provided a copy of the staff report. If the Traffic Review Committee's recommendation is to approve the implementation of a traffic control device, that recommendation will be presented to the
Traffic Director for consideration. The Traffic Director may take the following actions upon consideration of the Traffic Review Committee’s recommendation:
1. Approve, modify or deny the staff recommendation,
2. Continue the item for further deliberations or citizen input; or,
3. Return the issue to staff for additional analysis or alternatives.

IV. IMPLEMENTATION OF A TRAFFIC CONTROL DEVICE
Upon the Traffic Director’s request to install a traffic control device, the City Engineer will direct the appropriate department, agency or contractor for the traffic control device installation. A copy of the executed Work Order will become a part of the project file. The Traffic Director may deviate from the traffic engineering policy and procedures by stating specific grounds by which to substantiate the reason(s) for the deviation.
APPENDIX I: TRAFFIC PROCEDURE

Staff will work with the requesting party to fully understand the nature of the traffic issue and will apply one of the following subset procedures as needed. Each subset procedure shall be performed and implemented if warranted in accordance with the Texas Manual on Uniform Traffic Control devices, latest edition, the City's Designs Standards, City Ordinances and the Highway Capacity Manual, latest edition. In all cases, staff will maintain communication with the requesting party throughout the process, and inform all affected property owners of any pending changes. The City Engineer shall post details of proposed changes, as well as any Traffic Engineering Studies ordered, on the City website during the review period.

NOTE: For No Parking Requests and Cut-Through Traffic Requests, “affected property owners” shall include all homes whose front, rear, or side yard adjoins the street or alley segment in question, as well as houses that adjoin streets onto which traffic may be diverted as a result of any proposed change. In each case, the City Engineer will review the request and determine the affected area.

No Parking Requests:

- In order to implement a No Parking zone along a street, the originator of the request will be responsible for obtaining a written consensus by petition of all of the affected property owners contained within the defined area. Within the subject area defined mutually by the Traffic Review Committee and the requesting party, 100% of the affected property owners must sign the petition.
- To reverse a portion or all of a No-Parking zone along a street, 75% percent of the affected property owners must sign a petition as implemented through these policy guidelines.
- “No Parking” signs will be posted by the entire street, block or logical termination point as determined by the Traffic Review Committee and the requesting party. Other advisory or advanced warning signs will be placed as dictated by sound common engineering practice or the Texas Manual on Uniform Traffic Control devices, latest edition.
- All No-Parking zone applications shall be thoroughly reviewed by the Public Works Department after a period of two full years from the date of implementation. The No-Parking zone shall remain in effect unless a compelling safety reason is discovered.

Cut Through Traffic Requests:

- In order to implement a plan which limits cut through traffic, the originator of the request will be responsible for obtaining a written consensus by petition of all property owners contained within the defined area. Within the subject area defined mutually by the Traffic Review Committee and the requesting party, 75% of the affected property owners must sign the petition.
• To reverse any portion or all of a plan which limits cut through traffic, 75% of the affected property owners must sign a petition as implemented through these policy guidelines.

Requests for Crosswalks:

• The Public Works Department will communicate with the requesting party to fully understand their request and thoroughly define the requested location(s) for the crosswalk.
• The Traffic Review Committee will study the requested location and perform a crosswalk analysis which includes volume of pedestrian traffic, proximity of the subject location to schools, parks, swimming pools, retail centers, hike and bike facilities, vehicular traffic volume, etc.
• Crosswalks shall not be placed in the middle of a block.
• Crosswalks shall not be placed at uncontrolled intersections; meaning those without existing stop signs or traffic signals.

Requests for Children at Play Signs:

• Staff will communicate with the requesting party to fully understand their request and thoroughly define the requested location(s) for the sign(s). The requesting party will be informed that Children at Play signs will not be installed at any locations other than those directly adjacent to a public park or public swimming pools.
• The Traffic Review Committee will study the requested location and perform an advisory sign analysis which includes volume of pedestrian traffic, proximity of the subject location to schools, parks, swimming pools, retail centers, hike and bike facilities, vehicular traffic volume, etc.
• Children at play signs shall only be placed at locations adjacent to public parks or public swimming pools.

Requests for Other Advisory or Advanced Warning Signs:

• Staff will communicate with the requesting party to fully understand their request and thoroughly define the requested location(s) for the sign(s). The requesting party will be informed that it is City policy to install advisory or advanced warning signs only in accordance with the Texas Manual on Uniform Traffic Control devices, latest edition.
• The Traffic Review Committee will study the requested location and perform an advisory/advanced warning sign analysis which includes volume of pedestrian traffic, proximity of the subject location to schools, parks, swimming pools, retail centers, hike and bike facilities, vehicular traffic volume, etc.

Requests to Limit Speeding along Specific City-Controlled Streets:
• Staff will notify the Police Department and request speed enforcement for the subject area. The requesting party’s issue will be entered into the Traffic Database to search for similar complaints in the subject area.

• If there are more than two similar complaints in less than one year in the Traffic Database regarding the subject area, the City’s speed trailer will be used in addition to the Police Department speed enforcement.

• If the speed enforcement and speed trailer deployment do not achieve the desired result, the property owner(s) may pursue additional measures using the procedures prescribed in the Traffic Calming Policy (see attached).

Requests to Lower the Posted Speed Limit along Specific City-Controlled Streets:

• The requesting party’s issue will be entered into the Traffic Database to search for similar requests in the subject area.

• Under no circumstance shall any street within the incorporated City limits have a speed limit of less than 30 miles per hour per Texas State Law or City Ordinance.

• A speed study will be performed to determine the 85th percentile of speed. This information in conjunction with pedestrian traffic volume, roadway curvature, the number of traffic accidents, sight distance restrictions, etc. will be considered.

• Should changes be warranted, the Public Works Department will share the proposed changes with the affected property owners before they are implemented.

Requests for Stop Signs or Traffic Signals:

• The requesting party’s issue will be entered into the Traffic Database to search for similar requests in the subject area.

• A field visit to the subject location will be made to determine if the request is valid and warrants additional study.

• Stop signs or traffic signals shall not be installed within the corporate City limits of the City of Pearland unless approved by an authorized warrant analysis.

• Stop signs or traffic signals shall not be installed for the purpose of controlling the speed of a roadway as they have been shown to become a hazard at times when installed without warrant.

• Implementation of the plan will be in accordance with necessary budget considerations.

• Should changes be warranted, the Public Works Department will share the proposed changes with the affected property owners before they are implemented.

Requests for Traffic Calming Devices:

• Traffic calming is the application of specific devices or strategies to reduce the incidence of excessive speed or excessive traffic volumes on residential streets.

• The City of Pearland has an existing Traffic Calming Policy (see attached).

• Traffic Calming issues should be processed in accordance to the Traffic Calming Policy.
RESOLUTION NO. R2002-89

A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF PEARLAND, TEXAS, APPROVING AND ADOPTING A TRAFFIC CALMING POLICY.

WHEREAS, the City Council realizes the necessity to establish a consistent procedure for reporting and responding to traffic related requests by citizens; and

WHEREAS, the City Council held a workshop with City staff on April 15, 2002, at which time recommendations for the City's traffic calming policy were presented; now, therefore,

BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF PEARLAND, TEXAS:

Section 1. That the City Council hereby adopts Traffic Calming Policy attached hereto as Exhibit "A".

PASSED, APPROVED, AND ADOPTED this 10 day of JUNE, A.D., 2002.

[Signature]
TOM REID
MAYOR

ATTEST:

[Signature]
YOUNG LORING
CITY SECRETARY

APPROVED AS TO FORM:

[Signature]
DARRIN M. COKER
CITY ATTORNEY
Traffic Calming Policy

June 2002

Table of Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Policies And Procedures</td>
<td>4</td>
</tr>
<tr>
<td>Speed Limits, Intersection Controls, Parking Restrictions, And Signage</td>
<td>6</td>
</tr>
<tr>
<td>Resident Roles In The Neighborhood Traffic Management Program</td>
<td>9</td>
</tr>
<tr>
<td>Traffic Calming Devices</td>
<td>11</td>
</tr>
<tr>
<td>Appendix A</td>
<td></td>
</tr>
<tr>
<td>Traffic Calming Device Examples</td>
<td></td>
</tr>
<tr>
<td>Appendix B</td>
<td></td>
</tr>
<tr>
<td>Examples of Drive Around Traffic</td>
<td></td>
</tr>
<tr>
<td>Appendix C</td>
<td></td>
</tr>
<tr>
<td>Ranking Criteria</td>
<td></td>
</tr>
<tr>
<td>Appendix D</td>
<td></td>
</tr>
<tr>
<td>Application and Survey Forms</td>
<td></td>
</tr>
</tbody>
</table>
PROJECT: TRAFFIC CALMING

DATE: June 2002

Submitted by:

Lt. R.J. Fraser, Patrol Division Commander, Pearland Police Department

Submitted to:

Alan Mueller, Deputy City Manager, City of Pearland

Resources:

City of McKinney, Texas Neighborhood Traffic Management Program
City of Garland, Texas Transportation Department
Institute of Transportation Engineers
Texas Manual on Uniform Traffic Control Devices (TMUTCD)
Pearland Police Department Speed Hump Project 1996

Alan Mueller, Deputy City Manager
Michael Ross, Former Project Manager
Jerry Burns, Director of Public Works
John Hargrove City Engineer
Andrew Gallagher, Assistant City Engineer
Samson Ukaegbu, Traff Data and Associates
INTRODUCTION

In 1996 the Pearland Police Department commissioned a study on the feasibility of implementing a Speed Hump installation program within the City of Pearland. While this program received numerous requests for installations, the program never materialized as cities across the nation were bombarded with negative feedback over similar programs. Alternative, yet ineffective, methods of slowing traffic, such as multi-way stop signs, were utilized in neighborhoods. These methods, while politically expedient, create hazards of their own.

Speed Humps received a great deal of criticism due to their ineffectiveness, in part due to improper installation; some criticism due to the increase in noise pollution; and some from emergency responders, who felt that their response times hampered their ability to save lives. In response to the criticism, cities across the country are spending money to remove the costly Speed Humps.

Since the proliferation of Speed Humps, and their subsequent departure, many cities have turned to a variety of methods for reducing the speeds and volumes of traffic in neighborhoods. These methods are commonly referred to as traffic calming.

There are a number of goals that a traffic-calming program would hope to achieve:

- Education of the public with respect to causes and appropriate solutions for neighborhood traffic problems.
- Explaining the roles of residents, resident representatives, and the City of Pearland in addressing traffic-related issues in neighborhoods and encourage neighborhood involvement as part of the solution to traffic related problems.
- Create clear policies and guidelines for submission of resident traffic requests and the processing of those requests by City staff.
- Discuss the advantages and disadvantages of potential solutions for traffic problems.

There are seldom-simple solutions to the traffic related problems that arise in our City. For example, the police department does not have the resources to issue citations for every speeding or parking violation that occurs. Additionally, the need for quick response times by first responders can be in conflict with local resident's desires to make speedy travel on a street impossible. These issues may be considered in a manner that will bring a balanced solution. This program intends to promote a framework through which the City of Pearland can develop constructive relationships with local residents and homeowner's associations for solving traffic-related problems in neighborhoods.
POLICIES AND PROCEDURES

The number of traffic related requests received by the City of Pearland increases each year in direct proportion to the increasing size of the city, both in area and population. Requests, which stem from traffic in residential areas, generally fall into three major categories:

1. A significant number of vehicles traveling on a residential street appear to be exceeding the legal speed limit.
2. Through-traffic has increased the volume of traffic on a residential street beyond a reasonable level.
3. Parked cars limit the use and accessibility of a street for residents and emergency vehicles.

The City of Pearland should adopt the following traffic management strategies recommended by the Institute of Traffic Engineers (ITE), for handling identified traffic concerns such as those mentioned above:

1. Establish, revise, and enforce general laws and ordinances pertaining to speed limits, intersection control, and parking regulations.
2. Educate residents to better understand the causes of traffic problems, potential solutions to those problems, and the advantages and disadvantages of implementing these solutions.
3. Install traffic control devices that provide specific regulatory, warning, or guide messages to motorists judiciously, and in conformance with the Manual of Uniform Traffic Control Devices.
4. Install traffic calming design features that manage the physical movement of vehicles or pedestrians within the roadway or within a neighborhood when the first three strategies have proven ineffective.

The report of traffic related issues have historically gone to the Police Department. Recently, requests for signage, signal alterations, and speed humps have been referred to the newly established Community Action Center for handling by the City Traffic Engineer or appropriate staff. The CAC has been effective in routing requests, as well as insuring follow-up on a number of issues.

All requests for traffic-control or traffic-calming devices should be sent to the Community Action Center (CAC). The Community Action Center will provide information to the citizen regarding options available in responding to the inquiry. Additionally, the CAC will forward the information to the Police Department Patrol Commander and the Public Works Director. The CAC will continue to act as a liaison between City Departments and the requesting citizen(s).

The Police Department will coordinate targeted enforcement and make recommendations to the Public Works Director for the study of additional traffic-control devices.

The Public Works Director will coordinate the completion of any studies completed by the City Traffic Engineer, the proposal of ordinances for the placement of regulatory signs, placement of Traffic-Control Devices, and the placement of Traffic-Calming Devices.

In order to determine the proper measures to be taken in addressing a particular issue, the problem must be quantified with traffic volume counts, traffic speed assessments, accident records, and/or reports of problems from city personnel. Traffic volume and speed studies would be acquired from the City Traffic Engineer, while accident reports and citation activity are readily available from the Police Department.

If speeding were an identified problem, the second step would be to determine if an increased enforcement presence would be sufficient in addressing the issue. Additionally, neighborhood volunteers could distribute flyers in the neighborhood, informing residents of the specific problems that are occurring, the required corrective behaviors, and the responsibility of each resident to use the streets responsibly. Sign installation should also be considered at this time. If the
actions described were not effective in reducing the speeding problem, the site could be eligible for installation of traffic-control or traffic-calming devices to attempt to reduce the speeds.

In general, for a specific traffic-control device to be approved, the following must occur:

1. The City Traffic Engineer will conduct a study to determine and propose the most effective devices, if any, for each area.

2. The City Traffic Engineer must determine where the traffic-control device should be located.

3. City Council must pass an Ordinance for the enforcement of the device.

In general, for a specific traffic-calming device to be approved, the following must occur:

1. The City Traffic Engineer will conduct a study to determine and propose the most effective devices, if any, for each area. The cost of engineering studies is to be shared equally by the City and the residents or association requesting the device(s). Exception: Minor studies such as stop sign installation studies or similar studies intended to result only in the erection of regulatory or warning signs.

2. The City Traffic Engineer must determine where the traffic-calming device(s) should be located.

3. Residents potentially affected by the installation must indicate that they support the proposed location of the traffic-calming device through a survey prepared by the Public Works Department and distributed by a neighborhood representative.
SPEED LIMITS, INTERSECTION CONTROLS, PARKING RESTRICTIONS, AND SIGNAGE

The City of Pearland has the authority to set speed limits, locate intersection controls, and designate areas for parking restrictions by enactment of an ordinance. City staff recommends traffic control devices, which are in compliance with the Texas Manual on Uniform Traffic Control Devices (TMUTCD), to council for enactment of an ordinance. The manual is a statewide set of standards for traffic control devices such as speed limits, stop signs, traffic signals, and other controls.

Speed Limits

According to the TMUTCD, the following factors should be considered in an engineering and traffic investigation to determine the proper numerical value for a speed zone:

1. Road surface characteristics, shoulder condition, grade, alignment, and sight distance.
2. The 85th-percentile speed and pace speed.
3. Roadside development and culture, and roadside friction.
4. Safe speed for curves and hazardous locations within the zone.
5. Parking practices and pedestrian activity.
6. Reported accident experience for a recent 12-month period.

The 85th-percentile speed is that speed which 85% of drivers do not exceed on a specific road. This factor is often used to re-evaluate speed limits on existing streets. The assumption in the TMUTCD is that most drivers are reasonable and drive at a safe speed on a roadway. (Only 15% of drivers exceed a "reasonable" speed.) City staff recommends speed limits to City Council based on these factors.

According to Texas Motor Vehicle Laws and City Ordinance, the speed limit on city streets is 30 miles per hour, unless there is a specific ordinance that designates a different speed limit on a street segment. The City of Pearland utilizes the following speed limits:

1. Local residential streets, 30 miles per hour.
2. Collector Streets and thoroughfares, 30 to 45 miles per hour.
3. In school zones during designated hours, 10 to 15 miles per hour lower than the posted limit.

The Texas Department of Transportation sets the speed limit on State-maintained roads within the city such as F.M. 518 (Broadway), F.M. 1128, F.M. 2234 (Shadow Creek Parkway), and State Highway 288. As the Texas Transportation Code establishes a 30 miles per hour speed limit on all roadways, unless otherwise posted, the City of Pearland does not install speed limit signs on all residential streets. These signs cost money to install and maintain, and signs detract from the aesthetic appeal of a neighborhood, and overuse of speed limit signs limits their effectiveness.

When a significant percentage of vehicles utilizing a certain roadway appear to exceed the speed limit, a traffic study can be conducted to determine if a speeding problem exists as well as the extent of the problem. For purposes of this study, a speeding problem is indicated on a residential street when the 85th-percentile speed is at least 10 miles per hour over the posted speed limit. (i.e. at least 15% of the drivers travel more than 10 miles per hour over the speed limit.) (TMUTCD)

Residents or Homeowners' Associations may submit a request for a traffic study for a particular street to the Community Action Center. The City will pay for minor studies, such as those for Multi-way Stop Signs or Speed Limit Studies. Traffic studies will be conducted by the City Traffic Engineer. Requests will be handled in the order they were submitted as resources become available to conduct the study. After the City has conducted the study and determined that a street has a speeding problem, three steps will be taken to address this problem:
1. The Police Department will be informed of the problem and the possibility of increased enforcement of the speed limit will be discussed.

2. The Community Action Center will consult with neighborhood representatives to set up a Neighborhood Traffic Volunteer Program to keep the neighborhood informed about the traffic problems and what can be done to help remedy the situation.

3. The City Traffic Engineer will consider whether additional signage, such as speed limit or warning signs, would be appropriate to install at the site.

A street may be eligible for re-evaluation of the speed limit, especially if some road, or roadside, conditions are currently different than anticipated when the original speed limit was set or if there is a history of traffic accidents that appear to be related to the speed limit. The traffic study, which determines if an increase or decrease in the existing speed limit is warranted, will follow the guidelines in the TMUTCD. If warranted, City Council then must adopt an ordinance to establish a new speed limit.

Should the methods, described above, prove not to be successful in remedying the speeding problem, the installation of traffic calming devices, which are intended to physically reduce vehicle speed, may be considered at the site. Policies and guidelines for such installation are discussed later.

Intersection Controls

Intersection controls are intended to establish which vehicles have right-of-way through an intersection, improve traffic flows, and reduce intersection delays. Examples of devices, which are used for intersection control, include yield signs, stop signs, traffic signals, and turn prohibition signs. The TMUTCD has very specific guidelines and criteria for the proper use and placement of intersection controls. For instance, the TMUTCD states that stop signs should not be used for speed control.

Requests for installation of intersection controls may be submitted to the Community Action Center. Requests will be processed in the order they are received and as resources become available. The City Traffic Engineer will conduct a traffic study to determine if an upgrade of traffic controls is warranted at an intersection utilizing the criteria in the TMUTCD. The traffic study will include the measurement of traffic volumes into the intersection from all approaches, the analysis of the distribution of traffic throughout the day, and gathering accident records for the intersection.

If the City Traffic Engineer determines that changes to the controls at an intersection are warranted, an ordinance will be taken before City Council for their approval. If a traffic signal is warranted at an intersection, a four-way stop can be installed and/or maintained until funding for the traffic signal becomes available. (Traffic signals can cost over $100,000 per intersection.)

Parking Restrictions

Parking practices can occasionally cause traffic problems. For instance, traffic around schools can be problematic if parents double park or stand in driveways while dropping children off or picking them up. It sometimes becomes necessary to create zones with parking restrictions to keep streets open for emergency vehicles, fix sight visibility problems along a street, or restrict commercial operations from utilizing residential streets for parking. Parking restrictions on public streets are recommended by the City Traffic Engineer to the City for adoption through ordinance.

Most residential streets were designed to have on-street parking. Current City design standards allow a minimum pavement width of 27 feet in residential neighborhoods, which permits parking on both sides of the street and one through traffic lane in the center.

On-street parking has an added benefit of lowering traffic speeds on residential streets. Wide-open streets tend to encourage drivers to drive more quickly. On-street parking reduces the width of passable pavement and tends to slow drivers down because the parked cars appear to be obstacles. As long as on-street parking does not create a hazard for emergency vehicles, the City does not discourage on-street parking in residential areas.
Requests for parking restrictions can be referred to the Community Action Center. The City Traffic Engineer will examine the situation and consult with the Public Safety Department to determine if emergency service vehicles have been experiencing problems or potential problems exist.

Signage

Most traffic controls involve the use of signs (for example, stop signs, no parking signs, or speed limit signs). In addition to the regulatory signs mentioned previously, a number of warning signs and guide signs, such as "Dead End", "No Outlet", or street name signs, are also available for use by the City. The City of Pearland uses the guidelines of the TMUTCD for proper size, pattern, and location of all traffic signs.

As mentioned in the speed limit section of this chapter, the City of Pearland does not place speed limit signs on all streets and alleys because sign installation and maintenance are costly, signs can detract from the aesthetic appeal of a neighborhood, and the overuse of speed limit signs limits their usefulness. The same philosophy applies to the use of other signs, as well. The City Traffic Engineer must carefully examine each request for signage to determine if it complies with the TMUTCD.

Requests for traffic signage may be referred to the Community Action Center. Requests will be processed in the order they are received and as resources become available.
RESIDENT ROLES IN THE NEIGHBORHOOD TRAFFIC MANAGEMENT PROGRAM

Two of the goals of the Neighborhood Traffic Management Program are:

1. Educating the public with respect to causes of and appropriate solutions to neighborhood traffic problems, and
2. Encouraging residents to take an active role in achieving the solutions for neighborhood traffic problems.

Neighborhood traffic problems are often complicated issues that require a great deal of patience and hard work to solve. When the City determines that drastic measures are needed to attempt to solve a problem, the support of the affected residences will be needed before proceeding.

Neighborhood Traffic Volunteer Program

After the City of Pearland has conducted a traffic study to quantify the extent of a reported residential traffic problem, the Public Works Director or designee will meet with neighborhood representatives to go over the findings of the study and discuss the next steps toward addressing the problem. In most cases, one of those steps will be the creation of a Neighborhood Traffic Volunteer Program (NTVP).

The intent of the NTVP is to keep residents informed of potential traffic problems in their neighborhoods and to convey the message that everyone in the neighborhood has some responsibility for traffic conditions, good or bad. The main responsibility of neighborhood volunteers will be to pass out information about the specific traffic problems in the neighborhood and, if applicable, how neighborhood residents can help to correct the problems. To help set up this program, the Public Works Director or designee will act as a consultant to the neighborhood representatives. The City representative can provide prepared traffic literature and flyers for the neighborhood volunteers to distribute.

Surveys

In situations where enforcement, the neighborhood program run by volunteers, and any other signage or restrictions have not adequately corrected a traffic problem, a traffic calming device may be installed by the City to attempt to correct the problem. When streets or alleys are to be physically altered by a traffic-calming project, neighborhood representatives will pass out a survey prepared by the City of Pearland to potentially affected residents to determine the level of support for the proposal. The survey will detail what devices are under consideration, their proposed locations, potential advantages and disadvantages of the proposal, and funding options. Completed surveys will be returned to the City of Pearland for the proposal to be processed further. Survey requirements are discussed in under the Traffic Calming Devices section.

Requests for removal of traffic calming devices must go through the same survey process as requests for installation.

Funding for Installation of Traffic Calming Devices

The cost of installation of a traffic-calming scheme can be very expensive, ranging in cost from $1500 to over $20,000. When the City of Pearland has approved a traffic-calming project for attempting to address an identified traffic problem, one of the following project-funding mechanisms may be utilized:

1. Subject to annual appropriation, the City of Pearland will provide the funds for the project through its traffic-calming budget, or
2. If City traffic-calming funds have already been exhausted in the current budget year, the neighborhood may elect to pay for the entire cost of the traffic-calming scheme.
3. The City and neighborhood may agree to a cost sharing agreement for the project.

City funding limitations may at times affect the scheduling of approved traffic calming projects. If City funds have been exhausted in a given budget year, the neighborhood may elect funding...
option number 2 or 3 above or may be put on a waiting list until City traffic calming funds are available for the project.
TRAFFIC CALMING DEVICES

Traffic calming devices physically alter a street or alley and make undesirable traffic behaviors difficult or impossible. There are numerous devices, which are in use around the world, such as speed humps, speed bumps, traffic islands, and chokers. Appendix A contains many examples of traffic calming devices, lists some device specific criteria which go beyond the general requirements of this chapter, addresses some advantages and disadvantages for each device, and gives approximate costs for each device. The City of Pearland receives numerous requests for installation of traffic calming devices such as speed humps. Traffic problems reported to the City of Pearland will be processed as detailed in the preceding sections. When the City of Pearland determines that the installation of traffic calming devices is the last remaining option for addressing an identified traffic problem, the policies established in this section will govern the installation of the devices.

Overview

Occasionally, residents request that traffic be diverted off a specific residential street. When all other options have been exhausted to address an identified traffic problem, the City of Pearland may consider the installation of appropriate traffic calming devices. Several factors should be considered prior to the installation of any device including, but not limited to, the following:

1. The impact of the device on street users including motorcyclists, bicyclists, and pedestrians;
2. The impact of the device on drainage patterns;
3. The anticipated impact of the device on vehicular speeds and volumes;
4. The potential impact on other streets or alleys from diverted traffic;
5. The potential impact on emergency response vehicles and street maintenance activities; and
6. The degree of support for the installation of the device.

It is important that devices installed in public streets not inflict damage to passing vehicles or cause drivers to lose control of their vehicles.

This policy is designed to provide reasonable opportunities for the installation of traffic calming devices in residential streets and alleys based upon the degree of support from the surrounding residents and the roadway conditions. The following sections provide detailed information on the eligibility of streets and alleys and procedures for the installation of traffic calming devices.

Eligible Streets

The first step in the device installation process is to determine whether a specific street is eligible for consideration. Streets meeting the following criteria may be considered for traffic calming device installation:

1. The streets is paved and constructed on dedicated public right-of-way.
2. The property adjacent to the street is either wholly or primarily residential.
3. The street is not adjacent to open space, parks, public school grounds, etc. where drive around problems are likely. (See Appendix B for examples of drive-around problems.)
4. The street is not designated as a primary emergency response route by Public Safety Departments.
5. The street is not designated as a thoroughfare or collector roadway on the City of Pearland Thoroughfare Plan.
6. There must be no more than one moving lane of traffic in each direction.

Streets that meet the five criteria listed above shall also meet one of the following volume and speed criteria to be eligible for traffic calming device installation:

1. The street should have a minimum average daily traffic of 1,500 vehicles per day,
2. The 85th-percentile speed of vehicles traveling on the street should exceed the speed limit by at least 10 mph. (TMUTCD)

Location of Devices

Once a street or alley is determined to be eligible, the possible locations for traffic calming device installation are subject to the following conditions:

1. Sight distance

Adequate sight distance must exist at the desired location to safely accommodate traffic operations after device installation. City Traffic Engineer staff will review the area included in the request and identify any areas in which installation would be excluded due to sight distance.

2. Adjacent resident concurrence

A traffic calming device shall not be located within 100 feet, as measured along the right-of-way, of a property if the owner of that property objects to its placement at that location.

3. Distance to driveways, alleys, streets, or other devices

Traffic calming devices shall, in general, be located at least 20 feet from the nearest driveway, and at least 50 feet from the nearest intersecting alley segment, or intersecting street.

Spacing of devices will be determined by the City Traffic Engineer. Some device specific spacing criteria are listed in Appendix A.

4. Grade of street or alley

Some devices, such as speed humps, should not be installed on steep streets. In general, the grade of a street or alley approaching these devices must be less than 8%.

5. Street alignment

Traffic calming devices should not be installed in locations where horizontal or vertical curves could cause a vehicle traveling at a prudent speed to lose control when traversing the device.

6. Drainage

Traffic calming devices invariably have a negative effect on drainage through the street or alley in which they are installed. Care must be taken in locating a device to ensure that the device does not cause an existing drainage problem to worsen or create an unacceptable drainage problem.

Survey Procedure

The degree of resident support is a major factor in the consideration of traffic calming device installation. A survey of the homes within a specified survey area must be submitted to the City demonstrating the required degree of resident support.

Survey Area

- The survey area shall include all homes whose front, rear, or side yard adjoins the street or alley segment in which a proposed device would be located. The survey area will also include houses that adjoin streets onto which traffic may be diverted to if the proposed traffic-calming scheme is installed. The Public Works Department will review the request and determine the required survey area.
Only single-family, duplex, triplex, or four-plex homes shall be included in the survey response.

Survey Form

- The City will provide a survey form for the collection of signatures. This form will include a brief description of the request, traffic operation considerations, and instructions to the residents.
- For each street address included in the survey area, the following information must be included: Street address, printed name of resident, signature of resident, and preference (SUPPORT, OPPOSE, NO PREFERENCE).
- In order to provide each surveyed home the same level of input, only one resident signature per home will count in the survey.
- Up to three months shall be permitted for the collection of necessary signatures and survey submission to the City. If the necessary number of signatures is not collected within this time period, a new survey must be begun.

Required Percent of Support

- At least 85% of the homes in the survey area must indicate support of the proposed traffic-calming scheme. Only the "Support" preferences on the survey will be included in calculating the required support level. The "oppose" and "no preference" indications will not be used in this calculation.
- City staff will review the submitted survey to verify that the required survey area was included and to determine that at least 85% of the addresses support the installation.

Installation Approval

In order for the installation of a traffic-calming project to occur on a street, the following actions must occur:

1. When a sufficient number of "support" signatures have been obtained, the completed survey should be submitted to the Community Action Center.
2. When a submitted survey has been verified as meeting the required neighborhood support level, the Public Works Department will place the street on a list of approved traffic calming projects and will mail the residents in the survey area a letter advising of the approved installation request. This letter will provide an estimate of the cost of the project and explain the process for receiving City funding for the project and the resident funding option.
3. The City Manager, or his designee, will rank the list of approved traffic calming projects. Funds from the City's traffic calming budget will be allotted to the projects according to the approved rankings and until the funds have been depleted. If funds are available for a project in the City's traffic calming budget, the project will be scheduled for construction. If no funds are available, the project will be placed on a waiting list for funding. If the residents elect to pay for the installation, then upon the City's receipt of the full amount of the estimated project cost from the neighborhood representative, the project will be scheduled for construction. A sample ranking Criteria may be found in Appendix C.
4. The cost for each traffic-calming scheme will be based on the actual cost for a typical installation, including any necessary pavement markings and/or signs. The cost will be established by the Engineering Department and will reflect current costs. Appendix A contains a number of typical traffic calming devices and lists the approximate cost of each device.
5. If an approved traffic-calming project has been on the waiting list for more than one year at the time funds become available, a letter will be sent out to the residences in the survey area giving an approximate schedule of construction. In case resident support for the project has diminished since the project was initially approved, residents within the survey will have 30 days from the date of the notification letter to file written objections, which shall be evaluated by the Public Works Director before installation of the project.
Temporary Devices

Once the installation of a device has been approved, a temporary device may be utilized to measure the effectiveness of a permanent installation. Water-filled barriers may be utilized for a period of at least 90 days. While these barriers are not as aesthetically suited to the neighborhood as the permanent installation, they can prevent the expensive installation of an ineffective device.

 Appeals or Variances

The Public Works Director, or his designee, shall handle all appeals and may consider requests for unusual conditions that do not fall within these guidelines or for additional consideration of locations that failed to satisfy all of the included requirements. The following general guidelines will be used:

1. Requests for appeals or variances shall be submitted to the Community Action Center and shall specify why an appeal or variance is being requested.
2. An appeal or variance request will be forwarded to the City Manager for review.
3. The City Public Works Director will process a formal response to the appeal or variance request. The decision of the City Manager shall be final.

Removal and Alteration of Traffic Calming Devices

The process for requesting traffic calming device removal or alteration is the same as the process for installation. A survey must be submitted to the City with at least 85% of the homes in the survey area supporting the requested removal or alteration. Funding for the removal/alteration will be handled in the same manner as a new installation.

Design Standards and Policy Procedures

The Engineering Department shall prepare and maintain design standards for traffic calming devices installed through this policy. This policy will be reviewed by City Staff in two-year intervals with the first review being performed one year after the installation of the first device installed under the provisions of this policy. Review of this policy may also occur prior to the scheduled review date at the discretion of the City Council and staff.
Appendix A

Traffic Calming Devices
RUMBLE STRIPS

Description:
- Dots or strips are glued to the pavement to create a strip that causes the vehicle to rumble as it traverses through them.

Purpose:
-To alert motorists to unusual conditions ahead.

Cost:
- Highly variable. Approximately $1,000 - $5,000 per location.

Locations:
- 30 mph posted speed - 200' in advance.
- 40 mph posted speed - 325' in advance.

Positive Aspects:
- Vehicles may be slowed down up to 5 mph.
- Driver's attention is alerted to heighten safety.
- Low cost installation than can easily be removed or changed.

Negative Aspects:
- Very high level of noise pollution for adjacent residents.
- High maintenance is required to reattach dots or strips to the pavement.
NARROWING LANES

Description:

- Striping is used to create narrow 10 feet wide lanes. This gives drivers the feel of a narrow street that does not lend itself to high speeds.

Cost:

- The costs vary depending on the length of street, but are not anticipated to exceed $3,000 per mile.

Positive Aspects:

- Changes can be quickly implemented.
- The striping can be easily modified if paint is used.
- Speed may decrease and safety is improved through the provision of positive guidance to drivers.

Negative Aspects:

- Would increase regular maintenance.
- Residents do not always perceive striping as an effective tool for speed reduction.
- Cost of resurfacing residential streets will increase.
STOP SIGN REVERSAL

Description:

- Two stop signs are placed at four legged intersections in the City. The signs are placed on the lower volume approaches. If the volumes are balanced, the stop sign locations could be switched to stop the other street. The cost for switching stop signs would be less than $500 per location.

Positive Aspects:

- Changes can be easily made.
- Traffic speed may be reduced in the vicinity of the stopped approaches.

Negative Aspects:

- The speeds may increase on the unstopped approaches.
- There is high potential for violation of stops unless enforced periodically.
- Not always favorable to residents immediately adjacent to new stop sign locations.
- Potential for rear end accidents is increased in the short term.
CHOKERS

Description:

- Narrowing of a street at an intersection, mid-block on a segment of a street in order to reduce width of the traveled way by construction of a wider sidewalk or landscape strip.

Cost:

- Highly variable, Approximately $5,000 – $20,000 per location.

Positive Aspects:

- Slight slowing is normally the result.
- Shorter pedestrian crossing distances and better motorist—pedestrian visibility of each other.
- Creates added streetscape area for pedestrians and/or landscaping.
- Can discourage truck entry.
- Allows signs to be placed closer to driver’s cone of vision.

Negative Aspects:

- Potential obstacle for motorist to run into.
- May impede bicycle mobility and safety.
- Can impede legitimate truck movements.
- May require reworking of surface drainage.
GATEWAYS

Description:

- A special entrance feature, similar to a choker, that narrows a street at the intersection in order to reduce width of the traveled way. This is not a gate. Chokers are usually located within the block or at intersections. Gateways are considered more dramatic and provide identity to a neighborhood. The exact configuration of the gateway treatment will depend upon the location of the gateway, i.e., conflicts with driveways. Medians can also be added to street to slow turning movements and enhance the street.

Cost:

- Highly variable. Approximately $5,000 - $15,000 per location.

Positive Aspects:

- Creates an identity to a neighborhood.
- Creates added streetscape area for landscaping or monuments.
- Can discourage truck entry.
- Allows signs to be placed closer to driver’s cone of vision.

Negative Aspects:

- Can impede legitimate truck movements.
- Increased maintenance costs.
INTERSECTION CHANNELIZATION

Description:

- T-intersections are channelized so that vehicles are not traveling in a straight path. This has the effect of slowing vehicles down.

Cost:

- Approximately $30,000 per location.

Positive Aspects:

- Slows vehicle speeds.
- No significant impedance of fire and transit service.

Negative Aspects:

- Landscaping and signing/stripping maintenance will be required.
- Loss of on-street parking will occur.
MEDIAN BARRIER

Description:
- A physical barrier on a non-local street which can effectively eliminate local street straight-through and left turn traffic across the non-local street. A median barrier can take many forms, ranging from a closely-spaced row of flexible delineator posts to a series of pre-cast curb sections affixed to the pavement to a temporarily-placed but immovable 3' high concrete barrier (K-Rail) to an asphalt/concrete curbed island with or without a decorative landscaping and surface treatment. Costs vary widely among these options. The device is also known as a "worm."
- A full median with no breaks can also be used to prohibit all left turns.

Cost:
- Highly variable. Approximately $5,000 to $20,000 per location.

Positive Aspects:
- Makes the intersection safer by reducing the number of conflicting movements.
- Reduces local street volumes.
- Negates the possible need for future expensive traffic signal.

Negative Aspects:
- The physical barrier may shift traffic to other locations where left turn opportunities exist.
- This tool may inconvenience local residents who will be forced to drive longer more circuitous paths to reach their destination.
NECK DOWNS

Description:
- Physical curb reduction of road width at intersections by widening of street corner to
discourage cut through traffic and to help define neighborhoods.

Cost:
- Highly variable. Approximately $10,000 to $30,000 per location.

Positive Aspects:
- May be aesthetically pleasing, if landscaped.
- Good for pedestrians due to shorter crossing.
- Can be used in multiple application.

Negative Aspects:
- Increased landscaping maintenance.
- Landscaping may cause sight distance problems.
ONE-WAY STREET(S)

Description:
- One or more streets designated as "one-way".

Cost:
- Approximately $1,000 to $5,000 per location.

Positive Aspects:
- May reduce total volume on subject street.
- Adds vehicle capacity to a street.
- Safety is inherently greater on one way segments, but care must be taken to handle intersection treatments properly.

Negative Aspects:
- Can encourage increased speeds.
- Adverse travel distance results for local residents.
- May shift diverted traffic to another street.
RAISED INTERSECTIONS

Description:

- A raised plateau of roadway where roads intersect. The plateau is generally about 4" higher than the surrounding streets. This application is best for locations with high pedestrian volumes with significant safety concerns related to traffic speeds.

Cost:

- Approximately $50,000 to $100,000 per location.

Positive Aspects:

- Effective speed control.
- Aesthetically pleasing if well designed.
- Good pedestrian safety treatment.
- Can be used on higher or lower volume streets.

Negative Aspects:

- Expensive to construct and maintain.
- Affects emergency vehicle response time.
TRAFFIC CIRCLE

Description:
- A small circular island placed in the center of an existing local street intersection. Some may also refer to this device as a "roundabout".

Cost:
- Approximately $10,000 to $20,000 per location.

Positive Aspects:
- A noticeable reduction in speeds.
- Reduces accident potential.
- Under certain conditions capacity can be increased.
- Can be used instead of stop signs.

Negative Aspects:
- Required safety signing may detract from its aesthetic quality.
- Pedestrians and bicyclists must adjust to less traditional crossing patterns.
- Some parking may be lost on approaches to accommodate vehicles' deflected paths.
- May increase accidents until drivers become accustomed to change.
SERPENTINE

Description:
- A narrow serpentine road is created for several hundred feet using curbs and landscaping.

Cost:
- Approximately $50,000 to $75,000 per location.

Positive Aspects:
- Reduces vehicle speed.
- May reduce through traffic volumes.

Negative Aspects:
- Increased maintenance for landscaping and pavement.
- Significant loss of on-street parking.
- Most residents would have driveway affected by this type of installation.
- Fire and transit services would be affected.
SPEED HUMPS

Description:
- Mounds of paving material placed across a roadway for the purpose of causing motorists to reduce their operating speed while driving on the roadway.

Cost:
- Approximately $1,500 to $3,000 per hump.

Locations:
- Short block, single mid-block hump usually adequate.
- Longer blocks and continuous street sections, two or more humps spaced approximately 200 feet to 600 feet apart.

Positive Aspects:
- Reduces speed.
- Can cause traffic to shift to arterial system and no longer cut through the neighborhood.

Negative Aspects:
- Can cause traffic to shift to parallel residential streets.
- Affects emergency response times.
- Contents of vehicle can be jarred.
- Increase in noise adjacent to hump.
TURN RESTRICTION USING DELINEATORS

Description:
- Delineators glued or doweled to the pavement surface are used to create a barrier to prevent vehicles from making certain movement in and out of a local street. The delineators are typically placed along the centerline of the major collector street.

Cost:
- Approximately $1,000 to $10,000 depending on the number and types of delineators.

Positive Aspects:
- Reduces through volume of traffic.
- Reduces rear-end and left-turn accidents at major or collector street intersection with local streets.
- Low cost installation that can easily be removed or changed.

Negative Aspects:
- Little reduction in traffic speeds.
- Could potentially make it more circuitous for residents to reach their destinations.
- May divert traffic onto adjacent streets.
TWO LANE ANGLED SLOW POINT

Description:

- Three islands are used to create an angled path of travel for vehicles. The effect of angling the traffic path slows vehicles down. The volume of traffic may well be unaffected. The islands adjacent to the curb are typically landscaped.

Cost:

- Approximately $10,000 to $20,000 per location.

Positive Aspects:

- Slows vehicle speeds.
- Fire and transit vehicles are not impeded significantly.

Negative Aspects:

- Loss of on-street parking.
- Landscaping and signing/striping has to be regularly maintained.
CUL-DE-SAC

Description:
- Complete closure of a street either at an intersection or at a mid-block location.

Cost:
- Approximately $50,000 per location.

Positive Aspects:
- Very effective at eliminating most of the previously speeding traffic on the block.
- Very effective at reducing volumes.
- Can be landscaped for an attractive effect to convey street discontinuity.
- Mid-block type can be effectively used where abutting land uses change.
- Improved traffic safety.

Negative Aspects:
- Can negatively affect response times for emergency service.
- In large neighborhoods, can shift a problem elsewhere unless a strategic pattern of cul-de-sacs are used.
- Can generate confusion on the part of users unless signed carefully.
- May inconvenience local residents.
DIAGONAL DIVERTER

Description:
- Barriers between diagonally opposite corners of a 4-legged intersection, thus creating two unconnected L-shaped intersections.

Cost:
- Approximately $10,000 to $30,000 per location.

Positive Aspects:
- Reduces speed.
- Can achieve a 20% to 70% reduction in volumes.
- Reduces accident potential by eliminating conflicting traffic movements.
- Advantage over complete street closure (cul-de-sac) in that it has a lesser impact on circulation, as it actually creates no dead-end streets. Local residents and service vehicles may view this as a benefit in that their routes can be more direct.
- Can be attractively landscaped.

Negative Aspects:
- In a large neighborhood, can shift problems elsewhere unless a strategic pattern of diverters is used.
- May inconvenience local residents who are forced to drive longer more circuitous paths to/from their homes.
- Can generate confusion on the part of users unless signed carefully.
- May inconvenience local residents.
HALF CLOSURES

Description:

- The street is partially closed to traffic by the construction of a physical barrier at the entrance to the neighborhood to reduce cut through traffic.

Cost:

- Approximately $15,000 per location.

Positive Aspects:

- Reduces cut through traffic.
- May reduce traffic speeds.

Negative Aspects:

- May require additional maintenance.
- Could be violated, especially in the late evening.
MID-BLOCK ROAD CLOSURE

Description:
- Cul-de-sacs are created by closing the street mid-block using a landscaped island. Pedestrian access is provided across the island.

Cost:
- Approximately $20,000 to $50,000 per location.

Positive Aspects:
- Reduces through traffic volumes.
- Reduces speeds in the vicinity of the closure.

Negative Aspects:
- Traffic may be diverted onto adjacent parallel streets.
- Maintenance of the landscaped areas will have to be provided for.
- Emergency access will be impeded.
- Local residents may be forced to drive more circuitous routes.
- There is a loss of on-street parking.
Appendix B

Examples of Drive Around Traffic
Drive-around traffic could be a potential problem with some traffic calming schemes. Two examples have been provided to illustrate the potential problems.

In both examples, the drive-around problem would not be completely fixed by placing a post at the edge of the traffic calming device. There would still be open space to drive through to get around the device.

In general, drive-around should not be a problem on streets with standard 6-inch curbs. However, in locations that have so-called “mountable” curbs (curbs that can be driven on) or along streets and alleys that have no curbs at all, the potential for drive-around should be considered in any traffic calming design.
Appendix C

Ranking Criteria
APPENDIX C
Ranking Criteria

The Ranking Sum is determined by adding the total points awarded based on the following ten criteria. The street segment yielding the highest numerical value from the summation will be considered to have the highest priority. The street with the earliest application date will have the highest priority among streets with the same ranking summation value.

1.) **SPEED**

<table>
<thead>
<tr>
<th>85th percentile speed is above the posted speed limit by:</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 9 mph</td>
<td>1</td>
</tr>
<tr>
<td>10 – 12 mph</td>
<td>2</td>
</tr>
<tr>
<td>12 – 13 mph</td>
<td>3</td>
</tr>
<tr>
<td>14 – 15 mph</td>
<td>4</td>
</tr>
<tr>
<td>over 15 mph</td>
<td>5</td>
</tr>
</tbody>
</table>

2.)

<table>
<thead>
<tr>
<th>Vehicles per day</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 1500</td>
<td>1</td>
</tr>
<tr>
<td>1500 – 1600</td>
<td>2</td>
</tr>
<tr>
<td>1600 – 1700</td>
<td>3</td>
</tr>
<tr>
<td>1700 – 1800</td>
<td>4</td>
</tr>
<tr>
<td>over 1900</td>
<td>5</td>
</tr>
</tbody>
</table>

3.) **Reported Accident (Except Auto/Pedestrian)**
(Accidents along segment or within intersections within the segment but not including accidents at the terminal intersections unless the terminal intersections are interior to the neighborhood. Utilizes the most current 12 months of available records.)

1 point per accident.

C - 1
4.) **Reported Auto/Pedestrian Accident**
(Accidents along segment or within intersections within the segment but not including accidents at the terminal intersections unless the terminal intersections are interior to the neighborhood. Utilizes the most current 12 months of available records.)

2 points per accident.

5.) **Percent Residential Land Uses**
(Deed restricted vacant land will be counted towards the use to which it is restricted. All other vacant land will not be included in the total.)

<table>
<thead>
<tr>
<th>Percent Residential</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 20</td>
<td>1</td>
</tr>
<tr>
<td>20 - 40</td>
<td>2</td>
</tr>
<tr>
<td>40 - 60</td>
<td>3</td>
</tr>
<tr>
<td>60 - 80</td>
<td>4</td>
</tr>
<tr>
<td>80 - 100</td>
<td>5</td>
</tr>
</tbody>
</table>

6.) **Percent of Residential Lots Front Facing (as opposed to side abutting)**

<table>
<thead>
<tr>
<th>Percent Front Facing</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 20</td>
<td>1</td>
</tr>
<tr>
<td>20 - 40</td>
<td>2</td>
</tr>
<tr>
<td>40 - 60</td>
<td>3</td>
</tr>
<tr>
<td>60 - 80</td>
<td>4</td>
</tr>
<tr>
<td>80 - 100</td>
<td>5</td>
</tr>
</tbody>
</table>

7.) **Percent of Traffic which is Truck Traffic**
(three axles or more)

<table>
<thead>
<tr>
<th>Percent Truck Traffic</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 20</td>
<td>1</td>
</tr>
<tr>
<td>20 - 40</td>
<td>2</td>
</tr>
<tr>
<td>40 - 60</td>
<td>3</td>
</tr>
<tr>
<td>60 - 80</td>
<td>4</td>
</tr>
<tr>
<td>80 - 100</td>
<td>5</td>
</tr>
</tbody>
</table>
8.) **Number of Institutions**
(schools or parks within 1 lineal block on either end of the subject block; hospitals, churches, licensed day care, or other institutional uses located on the block of the proposed traffic calming device)

1 point per institution – Maximum of 3 points.

9.) **Absence of sidewalks on subject block.**

Points awarded: 1 Point

10.) **Evidence of Support**
Percent of residents, businesses, and landowners living in or owning property facing or having lot frontage on the street block on which traffic calming device is proposed to be located which have indicated support for the proposal through submittal of letter or petition signature.

<table>
<thead>
<tr>
<th>Percent Supporting</th>
<th>Awarded Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 85</td>
<td>0</td>
</tr>
<tr>
<td>85 – 90</td>
<td>1</td>
</tr>
<tr>
<td>90 – 95</td>
<td>2</td>
</tr>
<tr>
<td>95 - 100</td>
<td>3</td>
</tr>
</tbody>
</table>
A hypothetical example of how a survey area would be developed for a proposed traffic calming project has been provided in this section. The proposed project is the installation of two speed bumps on a section of Street D to lower traffic speeds. The following figure illustrates the situation:

Houses that lie along the section of Street D where the speed bumps will be installed will be included in the survey area because these residents will be directly affected by the installation (both positive aspects, such as lower speeds, and negative aspects, such as hump noise). Sections of Streets A, B, C, and F will also be included in the survey area because of the potential for traffic to be diverted from Street D onto those other streets if drivers attempt to avoid the speed humps. Residences on Cul-de-Sac E will not be included in the survey area because their houses do not lie along the traffic-calmed street and traffic will not be diverted to the cul-de-sac.
Appendix II - Traffic Review Procedure

Traffic Issue Presented to City Staff (any dept)

- Can Issue be Addressed With Increased Enforcement?
 - Yes: Address Issue With Increased Enforcement.
 - No:
 - Can Issue be Addressed with Non-Regulatory Signage or Stripping?
 - Yes: Address Issue With Non-Regulatory Device.
 - No:
 - Apply Traffic Procedure

- Is Issue Addressed in Traffic Procedure?
 - Yes:
 - Does Issue Require Engineering Study?
 - Yes: City Engineer Coordinates Traffic Engineering Study
 - No: Committee Reviews Issue and Forwards to Traffic Director with Recommendation
 - No: Forward to City Engineer

- Does Issue Meet Existing Criteria for Corrective
Traffic Calming Policy

- Traffic Calming Policy
 - Resolution No R2002-89, June 10, 2002
 - Addressed the necessity to establish consistent procedure for reporting and responding to traffic related requests by citizens.
Traffic Calming Policy

• Goals of the Traffic Calming Policy
 – Educate the public regarding the causes and solutions to neighborhood traffic problems
 – Explain the roles of residents and City Staff in addressing these issues and encourage neighborhood involvement as part of the solution.
 – Create clear policies and guidelines for requests and the processing of those requests by Staff.
 – Discuss advantages and disadvantages to potential solutions.
Traffic Policy

• Traffic Policy
 – Ordinance 1301, September 25, 2006
 – The City Manager or his designee shall place and maintain traffic control devices (signs, signals, etc.) as required in accordance with Texas Manual on Uniform Traffic Control Devices.
 – Texas Government Code _____
Traffic Policy

• Goal of the Traffic Policy
 – Adopted policy and procedures to provide a uniform methodology to address and mitigate unacceptable traffic conditions on the City’s public streets.
 – Establish a Traffic Review Committee to serve as a decision making body for issues included in the Traffic Procedure.
 • Cut Through Traffic, Speeding, Speed Hump requests, etc.
• Traffic Review Committee
 – Appointed by City Manager
 – Traffic Director, Chief of Police, City Engineer, Director of Public Works, Director of Engineering & Capital Projects
• Traffic Review Committee
 – Review all traffic engineering studies relative to requests for traffic control devices.
 – Determine based on the Traffic Procedure if the requests meet the warrant criteria.
 – Make recommendation to the Traffic Director for consideration
Traffic Policy

• Procedure
 – Flowchart
Traffic Policy Review

• This policy will be reviewed every two years.
 – R2002-89

• Incorporate necessary revisions due to change in City organization, practice and current conditions.
Traffic Policy
Review – Proposed Revisions

• Revision #1
 – Revise references to City Engineer from Director of Public Works due to Re-Organization in 2012
 • Traffic Manager reports directly to City Engineer instead of Director of Public Works.
 – Added Director of Engineering & Capital Projects to the Traffic Committee
Traffic Policy
Review – Proposed Revisions

• Revision #2
 – Remove reference to the Citizen Action Committee

 • Previously, the Traffic Calming Policy has all requests for traffic control devices submitted to a Citizen Action Committee.

 • In actual practice, the requests are submitted to the Traffic Review Committee as appointed by the City Manager per the Traffic Policy; Ordinance No. 1301.
Traffic Policy Review – Proposed Revisions

• Revision #3
 – Consistency between the procedures for processing the different types of requests
 – Removal of redundant items
Traffic Policy
Review – Proposed Revisions

• Revision #4
 – Update Policy appeal process and procedures.
 – Revised policy will be for the resident to appeal to Traffic Director prior to appealing to City Council.
 • This allows Traffic Director to address the majority of appeals at a Staff level as intended per Traffic Policy; Ordinance No. 1301.
Traffic Policy Review – Proposed Revisions

• Revision #5
 – Updated Traffic Review Procedure flow chart to accurately represent the language of the policy.
 – Traffic Review Procedure flow chart was Appendix to Traffic Policy; Ordinance No. 1301.
Traffic Policy
Review – Proposed Revisions

• Revision #6
 – Consistency on required % of support from ‘Affected Property Owner’ to consider installation/removal of traffic control devices
 – Current Policies range from 75% to 100%
 – Staff recommends 75% for installation and removal
Traffic Policy
Next Steps

• Include input from City Council
• Finalize Policy revisions
• Present for Council action late August/Sept.
Workshop
Item No. 4

4. COUNCIL INPUT AND DISCUSSION: REGARDING THE PROJECTS QUARTERLY UPDATE. Mr. Trent Epperson, Director of Capital Projects and Engineering.
EXECUTIVE SUMMARY

Council will be updated regarding the status of all current projects, including water, drainage, wastewater and thoroughfare.

RECOMMENDED ACTION

Conduct the workshop.
Monthly Projects Update

June 30, 2013

Hickory Slough Detention at Max Rd & Max Rd Sports Complex, Phase 1
Far Northwest Wastewater Plant Improvements
Hatfield Basin Trunk Sewer
Dolores Fenwick Nature Center, Phase 2
Pearland Parkway Extension
Max Road Reconstruction/Widening
Convention & Visitors Bureau Office Build Out

Prepared by:
Andrea Brinkley

For Distribution to City Council
Hickory Slough Detention at Max Rd & Max Rd Sports Complex, Phase 1

Design Engineer: Jacobs Engineers, Inc.
Contractor: Triple B Services CM: Staff
Billed to Date: $3,703,969.22 % Billed: 70.4%
Contract Days Used: 252 % of Contract: 135.5%

Progress this period:
• Contractor has exceeded substantial completion time.
• **Completed 100% of excavation of main pond.**
• Completed pump station electrical panels, stairs and grating installation.
• Continued Hughes Ranch Rd curb inlet and sidewalk work.
• Continued field drainage work.
• Limited areas of dispersive soils found, initiated removal dispersive soils and replacement with suitable material.
• Initiated field lighting conduit installation.
• Lime stabilized and placed gravel on all weather pump station access road.
• Placed concrete on additional driveways along Hughes Ranch Rd.
• Completed plat approval.
• **Staff reviewed 100% Sports Complex PS&E package.**
• Coordinate with CenterPoint Energy for power along all weather road.
• Continued reimbursement requests to BDD#4 and Developer.

Planned activities for the period ending July 31, 2013:
• Complete pump station fence and prepare for power.
• CPE to initiate power pole installation.
• Complete remediating dispersive soils.
• Complete field lighting conduit installation.
• Install pumps and perform system start up.
• Complete post excavation survey.
• Pressure test and disinfect water line and test site sanitary.
• Staff to review cost estimate and items for Sports Complex PS&E package
• **Hold Technical Review Committee meeting.**
• **Prepare to advertise Sports Complex in late July/early August**

Project schedule:
• Design: Detention: Nov. 2010 to July 2012; Sports Complex: to July 2013
• Construction: Detention: NTP Sept. 17, 2012, Sports Complex: July/August 2013
Far Northwest Wastewater Treatment Plant Improvements

Design Engineer: Binkley & Barfield Inc.
Contractor: Industrial TX Corp
Billed to Date: $94,335.00
Contract Days Used: 127

Progress this period:
- Sand filter media and plates removed and replaced, and light tested.
- Small weir plate found missing in sand filter, ordered to install.
- Manufacturer sent representative to oversee plate installation and light testing.
- UV equipment delivery is expected to be on time at the end of June.
- Staff communicated with manufacturer regarding plant data for effluent optimization.

Planned activities for the period ending July 31, 2013:
- Test sand filter, complete repairs on operator interface, festoon system and travelling bridge track.
- Accept new UV system and initiate equipment installation.
- Plan for Decanter valve replacement
- Support Public Works staff regarding effluent optimization.
- Support Public Works staff coordination with Decanter manufacturer to schedule work outlined in work plan for Decanter repairs to coordinate with UV and valve repairs.

Project schedule:
- Design: February 2012 to December 2012.
- Construction: February 18, 2013 Notice to Proceed.
- Substantial Completion: September 6, 2013.

Hatfield Basin Trunk Sewer

Design Engineer: Freese & Nichols, Inc.
Contractor: SJ Louis Construction of Texas
Billed to Date: $0
Contract Days Used: 0

Progress this period:
- Council approved the construction and materials testing contracts.
- Notice to Proceed is July 8th.
- Issued Pre Construction notification to residents adjacent to project.
- Scheduled Pre Construction meeting.
- Monitored completion of utility relocations.

Planned activities for the period ending July 31, 2013:
- Hold Pre Construction meeting.
- Start submittal process, submit schedule, install project signs.
Hatfield Basin Trunk Sewer (cont’d)

- Contractor to initiate clearing and grubbing from Magnolia to Mary’s Creek along easement.
- Coordinate with residents and businesses regarding schedule.
- Contractor to set up construction office and laydown yard.

Project schedule:
- Design: February 2011 to November 2012 (delayed due to PER delay).
- Draft PER: November 2011 (Delayed due to Fite alternate route)
- Final PER: March 2012
- Construction: 2nd quarter 2013

Trails at JHEC (formerly Dolores Fenwick Nature Center), Phase 2

Architect: Randall-Porterfield Architects, Inc.

Progress this period:
- Geotechnical firm working on soil testing and report.
- Coordinated with board walk system vendor.

Planned activities for the period ending July 31, 2013:
- Obtain soil borings report and complete design of foundations for boardwalk.
- Review contract documents and project for possible phasing, use of grant funds.
- Continue with Final Design and complete submittal of 90% plans.
- Continue coordination with KPB.

Project schedule:
- Design: September 2011 – April 2012.
- Construction: Pending funding

Pearland Parkway Extension

Design Engineer: HDR Engineers, Inc.

Progress this period:
- Submitted 100% plans to TxDOT Austin.
- TxDOT letting confirmed, with delayed Notice to Proceed.
- Plans approved by BDD4 on June 4th.
- Easement submitted to BDD4 for consideration and approval.
- Met with residents replying to notice, all withdrew concerns, completing the environmental process and document finalized.
- TxDOT continued reimbursements to City.
- Continue to monitor project with TxDOT, maintain schedule.
Pearland Parkway Extension (cont’d)

Planned activities for the period ending July 31, 2013:
- Meet with Shadycrest residents regarding barrier fence.
- Initiate property acquisition, pending TxDOT approval.
- **Monitor TxDOT bid schedule.**
- Coordinate with CPE regarding power pole relocation.
- Continue to submit and monitor reimbursements.

Project schedule:
Design: February 2012 – August 2013.
Letting: August 2013
Construction: October 2013 – September 2014

Max Road Reconstruction/Widening
Design Engineer: Klotz Associates, Inc.

Progress this period:
- Schematic plan and alignment reviewed with staff.
- Met with residents and businesses regarding driveways and roadway.
- Attended drainage and hydraulics meeting with TxDOT and BDD4.
- Engineer working on 30% PS&E submittal, however TxDOT LGPP review process changed, so plans have been advanced to be more complete.
- Coordinated with TxDOT environmental staff, prepared for Public Meeting.
- Attended TxDOT certification training for Local Let projects.
- Submitted reimbursement request to TxDOT.

Planned activities for the period ending July 31, 2013:
- **Hold Public Meeting July 2nd at Berry Miller Jr. High.**
- Staff to review schematic for changes brought up during Public Meeting.
- Finalize alignment and parcels for road right of way.
- Continue environmental document work.
- Engineer to submit drainage and geotechnical reports, 50% plans.
- Coordinate with TxDOT and BDD4 on hydraulics and draft drainage report.
- Obtain approval of bridge foundation design.

Project schedule:
Letting: July 2014
Construction: October 2014 – September 2015
Convention & Visitor’s Bureau Office Build Out

Architect: Wilson Architectural Group

Progress this period:
- Obtained approval of program of spaces and floor plan layout.
- Architect submitted 30%, 60%, 90% PS&E.
- Selected office furniture and obtained proposal.
- Submitted plans to Town Center landlord.
- Reviewed 90% and 100% plans with Building official and Fire Marshall.
- Reviewed 100% plans and finalized for City Engineer’s signature.
- Held coordination meeting for IT needs for space.
- Prepared specification documents.

Planned activities for the period ending July 31, 2013:
- Obtain approval from Town Center landlord.
- **Bid project starting July 3rd and open bids on July 18th.**
- Coordinate with IT staff to obtain pricing on IT and phone systems and installation.
- Finalize furniture, IT and phone needs and costs.
- Begin furniture and IT /phone procurement process.

Project schedule:
- Construction: July 2013 – September 2013
Monthly Projects Update

June 27, 2013

Bailey Rd (Veterans to FM1128)
Business Center Drive
Cowart Creek Diversion Project
Old Alvin Road Water Line
Shadow Creek Ranch Park
SH35 Water Line – FM518 to Magnolia
Twin Creek Regional Lift Station

Prepared by:
Cara Davis

For Distribution to City Council
Bailey Road (Veterans to FM 1128)

Design Engineer: Wilbur Smith Associates (WSA)
Original Contract Amount: $1,710,346.00
Current Contract Amount: $1,848,685.00
Billed to Date: $1,691,173.50 % Billed: 91.48
Plan Status: 100% Complete

Progress this period:

- Held coordination meeting with TxDOT, City staff, and design consultants to discuss project requirements for the project under federal TIP funding.
- Acquisition negotiations/proceedings continued
- Contractor continued clearing operations and requested substantial completion inspection. Inspection will be performed in early July.

Planned activities for the period ending July 31, 2013:

- Continue acquisition process to obtain last parcels along the alignment.
- Complete substantial inspection punch items and close out contract.
- Negotiate a contract amendment with the design consultant to meet new project requirements and update plans. Submit project information requested by TxDOT

Project schedule:

- Design (Completed) – 3rd Quarter 2008 thru 2nd Quarter 2010.
- Construction – Scheduled for Fiscal Yr 2015

Business Center Drive

Design Engineer: Freese & Nichols
Contractor: Lazer Construction Company CM: Klotz & Associates
As of June 25, 2013
Original Contract Amount: $3,474,998.80
Current Contract Amount: $3,476,348.80
Billed to Date: $2,564,523.55 % Billed: 73.77
Contract Days Used: 220 % of Contract Days: 82.2

Progress this period:

- All lanes completed from drainage way south to CR 59, including turn lanes and median crossings. Grading and backfill of medians continues. Curb, sidewalk, and paver placement in progress.
Business Center Drive (cont…)

- Pavement on northbound lanes has been placed from drainage way to just south of Centerpoint power station. Subgrade preparation for remaining north bound lanes in progress.
- Installation of irrigation system has begun.
- Centerpoint gas line relocation for the traffic signal foundation at CR59 has begun.

Planned activities for the period ending July 31, 2013:

- Complete subgrade preparation and pavement placement operations on northbound lanes toward FM 518.
- Complete installation of curbs, median cuts, and turn lanes. Adjust inlets and manholes as necessary. Continue landscape installation.
- Begin traffic signal installation.
- Progress meeting scheduled for July 2nd, 16th, and 30th.

Project schedule:

- PER – 3rd Quarter 2008 thru 2nd Quarter 2010
- Design – 2nd Quarter 2011 thru 3rd Quarter 2012

Cowart Creek Diversion Project – Detention Pond & Diversion Ditch

Design Engineer: JKC & Associates, Inc.
Contractor: Brazoria Drainage District 4 CM: N/A
As of May 29, 2013
Original Contract Amount: $391,457.82
Current Contract Amount: $391,457.82
Billed to Date: $160,624.30 % Billed: 41
Contract Days Used: N/A % of Contract Days: N/A

Progress this period:

- Phase II slope paving activities continued.

Planned activities for the period ending July 31, 2013

- Complete Phase II of slope paving activities.

Project Schedule:

- Diversion Ditch: Construction: 3rd Quarter 2011 – 2nd Quarter 2013
Cowart Creek Diversion Project – Pump Station

Design Engineer: Jones & Carter (formerly Montgomery & Barnes, Inc.)
Contractor: Reddico Construction Company CM: Jacobs

As of March 8, 2013
Original Contract Amount: $1,083,680.90
Current Contract Amount: $1,083,680.90
Billed to Date: $1,061,993.25 % Billed: 98
Contract Days Used: 208 % of Contract Days: 77.04

Progress this period:
- Completing final closeout paperwork

Planned activities for the period ending July 31, 2013:
- Work with AT&T to bring in phone service for the notification system.
- Close out contract.

Project Schedule:
- Council Award: June 11, 2012
- NTP: July 23, 2012
- Construction: 3rd Quarter 2012 – 2nd Quarter 2013
- Scheduled Substantial Completion: April 19, 2013

Old Alvin Road Water Line

Design Engineer: Charles D. Gooden Consulting Engineers, Inc.
Original Contract Amount: $340,756.00
Current Contract Amount: $349,181.00
Billed to Date: $304,228.18 % Billed: 84

Plan Status: 100% Complete

Progress this period:
- Awarded construction contract to SER Construction at June 10th Council meeting. Materials testing awarded to Rabba Kistner at same meeting.
- Held pre-construction conference on June 17th and issued NTP to mobilize no later than June 27, 2013. Contractor has mobilized on site and began installing SWPPP. Submittal review for construction materials in on progress
Old Alvin Road Water Line (cont....)

Planned activities for the period ending July 31, 2013:

- Continue review of construction material submittals.
- Contractor to begin installation of water line.

Project Schedule:

- Design/Acquisition – 1st Quarter 2011 thru 1st Quarter 2013
- Bid: 1st Quarter 2013.
- Construction: 2nd Quarter 2013 – 4th Quarter 2013

Shadow Creek Ranch Park

Design Engineer: Cobb Fendley, Architect: Randall Porterfield

Original Contract Amount: $649,748.50
Current Contract Amount: $649,748.50

Billed to Date: $290,568.83 % Billed: 44.7

Plan Status: 60%

Progress this period:

- 60% plans submitted to City for review.
- Work continued on the drainage analysis
- Held progress meeting June 27th

Planned activities for the period ending July 31, 2013:

- Return 60% plans with review comments to Engineer
- Continue site plan development and structural design for buildings.
- Continue drainage analysis and outfall design. USACE permit application will be completed and submitted upon completion of the drainage report, planned for the end of July.
- Hold progress meeting July 25th

Project Schedule:

- Consultant Selection – Complete
- Schematic Land Plan & Programming – October 2012 to April 2013
- Design – April 2013 to September 2013
- Bid/Award – September/October 2013
- Construction – November 2013 to November 2014
SH35 Water Line – FM518 to Magnolia

Design Engineer: Brown & Gay Engineers, Inc.
Original Contract Amount: $155,200.00
Current Contract Amount: $155,200.00
Billed to Date: $0 % Billed: 0
Plan Status: 0%

Progress this period:
• Contract for Professional services awarded to Brown & Gay Engineers at June 10th Council meeting. Design kickoff meeting held June 17th at which time Notice to Proceed was also issued.
• Engineer began initial data gathering and conceptual designs.

Planned activities for the period ending July 31, 2013:
• Begin survey and land title services
• Begin plan and profile sheets and preparation of draft PER

Project Schedule:
• Consultant Selection – Complete
• Design – June 2013 to September 2013
• Bid/Award – September/November 2013
• Construction – November 2013 to June 2014

Twin Creek Regional Lift Station

Design Engineer: IDS Engineering Group (formerly Pate Engineers, Inc.)
Contractor: E.P. Brady, Ltd. CM: City of Pearland, Cara Davis
As of June 25, 2013
Original Contract Amount: $2,371,573.35
Current Contract Amount: $2,371,547.74
Billed to Date: $1,132,624.76 % Billed: 47.76
Contract Days Used: 358 % of Contract Days: 88.05

Progress this period:
• Contractor continued laying sanitary sewer from Woodthrush Drive toward Hickory Knoll along Glastonbury.
• Centerpoint gas has relocated their facilities at Hickory Knoll in preparation for the bore across Hickory Knoll for the sanitary sewer.
• Centerpoint electric has de-energized their facilities at Woodthrush in preparation for the continuation of line from the station towards Bishopton.
• Held progress meeting June 20th
Planned activities for the period ending July 31, 2013:

- Contractor to continue installation of gravity sewer working toward Hickory Knoll Drive. Twin Woods lift station will be decommissioned.
- Sanitary sewer installation will continue from Woodthrush toward Bishopton.
- Progress meeting scheduled for July 18th

Project Schedule:

- Consultant Selection – 4th Quarter 2010
- PER – 1st Quarter 2011 thru 3rd Quarter 2011
- Design – 3rd Quarter 2011 thru 2nd Quarter 2012
- Construction – 3rd Quarter 2012 thru 3rd Quarter 2013
Monthly Projects Update

June 28, 2013

Highway 35 Reconstruction
Intelligent Traffic System
Country Place Bed and Banks Permit
Alice Street Plant

Prepared by:
Skipper Jones

For Distribution to City Council
Highway 35 Reconstruction

Design Engineer: S&B Engineers & TxDoT,
Contractor: **Triple B Construction**
CM: **TxDoT**
Billed to Date: $%
Contract Days Used: % of Contract Days:

Completion Date: per contract Oct. 2012

Projected Completion Date: October, 2013

Progress this period:
- **Pavement**
 - The WalMart intersection (primary entrance) pavement now complete
 - Knapp Road intersection now complete
 - Contractor focusing on business driveways along the east side
 - Furniture Store access now half complete and finishing in early July
 - Halik, first half, intersection scheduled to be poured July 1 with traffic transfer and pour of second half to follow immediately
 - Approximately 300 feet of lane paving remaining north of Hickory Slough
- **Bridges**
 - Decks now all completed
 - Town Ditch
 - Town Ditch bridge deck was poured completed May 8th
 - south approach complete to wide flange
 - Scheduled to pour north end next week
- **Hickory Slough Bridge**
 - Approaches complete
 - Working on bridge rails
- **Clear Creek Bridge**
 - sidwalk is being formed now on Clear Creek
 - Approaches are scheduled for next week
- Contractor has nearly completed installation of driveways and sidewalks from
- Signal alignment at the FM518 intersection appears to be incorrect. TxDoT has determined that they will investigate possible alternatives

- **Contractor now projecting Substantial Completion beyond September 2013**

Intelligent Traffic Management System

Design Engineer: **AECom and Wilber Smith**
Contractor: **Third Coast Services**
CM: **in House**
Billed to Date: $ 484,226.38
% Billed: 14.8
Contract Days Used: 178
27% of Contract Days:

Progress this period:
• Processed 1st Reimbursement Requests for $368,012.05 or 80% of the first payment ($477,533) less City participation items and 5% retainage

• Completed all of the material submittals required for the initial phase of the work and now have all major components on board
 o This process has resulted in a change to the original wireless data transfer system, (new radios) An alternative radio system was submitted by the Contractor that provided greater data transmission rates as well as greater range and signal strength.

• Received major components of the video detection system and have them stored on site.

• Received HDPE conduit and have stored on site for use at the fiber installation effort begins

• Received some (30) of the new signal controllers

• Installation of video detections system has begun at the intersection level with the installation of cameras, video encoders and cabling

• Siemens, major material supplier, has begun making preparations to transfer base timing programs from current signal controllers to the new controllers

•

Planned Activities for period ending July. 30, 2013

• Continue installation of video detection systems at intersections

• Take receipt of half of the new controller cabinets

• Begin installation of controllers and communications equipment in new cabinets and begin testing these as they are completed in the signal shop at Hillhouse

• Scheduled to begin installation of underground conduit for fiber network in July

• Pending arrival of the overhead crossing permit from BNSF Railroad, overhead contractor is preparing to begin installation of the fiber overlash in those areas requiring this

Project Schedule

• Notice to proceed issued January 7th,
• 458 days to Substantial completion, April 10, 2014
• 548 days to final completion and acceptance, July 9, 2014

Bed and Banks Permit Application

Design Engineer: **Cobb Fendley**
Contractor: CM:
Progress this period:

- Initial informational requests have been filled and the consultant is drafting the application at this time.
- Received and reviewed draft of the application permit. Made revision comments and coordinated with liaison Board for revisions to the permit application documents. Once these items have been completed the application will be filed with TCEQ.
- Completion of the process is anticipated to require approximately one year.

City of Houston Connection (W42051) Alice Street Water Plant

Design Engineer: Camp Dresser & McKee, Inc.
Contractor: Industrial Tx Corp
CM: LJA Engineering
Original Contract Amount: $6,846,000.00
Revised Contract Amount: $7,524,030
Billed to Date: $7,524,030 (thru 7/15/13) Percent Billed: 100%
Original Contract Time: 360 days
Revised Contract Time: 429 days
Contract Days Used: 515 (thru 11/25/2011) Percent Contract Used: 120.0%
NTP: June 28, 2010

Progress for period ending June 2013:
- Final invoice submitted by contractor
- Engineer preparing Record Drawings

Planned progress for period ending July 2013:
- Pay final invoice
- Receive Record Drawings from Engineer
Monthly Projects Update

June 26, 2013

McHard Road 16” Water Line
Westchester Sidewalk and Drainage
Walnut Lift Station
Westside Library
Fire and EMS Administration Building
McHard Road Extension

Prepared by:
Jennifer Lee

For Distribution to City Council
McHard Road 16” Water Line and Roadway PER

Progress this period:

- Attended monthly progress meeting.
- Continued conversations about diverting some of the flows to the south and downsizing the large drainage boxes.
- The additional flows would need to be detained in the Max Rd. detention pond. An analysis was performed that demonstrated that diverting up to 20% of the northern flows, would not have an impact on Max Rd. or the ball fields. In the future BD4 may need to make some drainage adjustments, but the city would not.
- A supplemental Drainage Report that includes redirecting some of the northern flows has been submitted to the city for review.
- The PER has been updated with the revised roadway alignment. The revision was necessary to show the alignment running south of the Village of Brookside city limits.
- Costs for the sidewalk were revised to include a thickness of 6” instead of the initial 4”.
- Discussed the pipeline conflicts and possible solutions to remedy the conflicts.
- Staff completed the review of the Waterline and Roadway PERs and sent comments to Freese and Nichols.
- Beginning with the next submittal, the Waterline will be a separate design.

Planned activities for the period ending July 31, 2013:

- Prepare and attend a monthly progress meeting.
- Continue utility coordination.
- Begin surveying coordination.

Project Schedule:

- Project design is scheduled for twenty-four months.
- Waterline should bid early 2014.
- Design is on schedule.

Westchester Sidewalks and Drainage Project

Design Engineer: GC Engineering
Contractor: Lazer Construction Company, Inc.
Contract Amount: $381,206.72
Change Orders to Date: $0.00
Adjusted Contract Total: $381,206.72 % of Increase: 0
Billed to Date: $0.00 % Billed: 0
Contract Duration: 60 Days (Substantial)
Contract Days Used: 4 % of Contract Days: 0.06
Contract Days Extension: 0
Additional Rain Days: 0
Westchester Sidewalks and Drainage Project (cont.)

Progress this period:

- Held Pre-construction conference with Lazer Construction.
- Met with Public Works on site to discuss their assistance with adjusting waterline leads.
- The NTP date was June 24, 2013, however only equipment and materials were delivered to the site. Crews did not arrive on site until June 27, 2013.
- Lazer Construction has submitted several submittals that are being reviewed by GCE.

Planned activities for the period ending July 31, 2013:

- Maintain project schedule

Walnut Street Lift Station

Progress this period:

- Attended the monthly progress meeting.
- GCE made the changes to the design that were discussed in last month’s meeting. These changes included the decision to leave the SCADA antenna where it is currently and only move the control panel and the electrical panel. This will reduce cost.
- Further discussed the design of the lift station with Public Works; making minor adjustments based on their suggestions. Adjustments included adding a T in order to by-pass the lift station in the event it goes down. Flows will be diverted to SWEC and Barry Rose.
- The lift station design is near 60% complete.

Planned activities for the period ending July 31, 2013:

- Receive 60% design for review.
- Receive review comments.

Project Schedule:

- The design of the lift station is expected to take six months.
- The construction phase is expected to take five months.

Westside Library

Design Architect: Wilson Architectural Group
Contractor: Construction Masters of Houston.

<table>
<thead>
<tr>
<th>Contract Amount: $375,000.00</th>
<th>Change Orders to Date: $4,958.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Contract Total: $379,958.36</td>
<td>% of Increase: 1.3</td>
</tr>
<tr>
<td>Billed to Date: $360,094.32</td>
<td>% Billed: 94.77</td>
</tr>
<tr>
<td>Contract Duration: 120 Days (Substantial)</td>
<td>% of Contract Days: 82.5</td>
</tr>
<tr>
<td>Additional Rain Days: 0</td>
<td></td>
</tr>
</tbody>
</table>
Westside Library (cont.)

Progress this period:

- Continued to address HVAC issues.

Planned activities for the period ending July 31, 2013:

- Continue to work through Warrant items; in particular the HVAC.
- Receive “As-built” drawings
- Release retainage
- Close out P.O.s

Project Schedule:

- Project is complete.

Fire and EMS Administration Building (Old PD Renovation)

Design Architect: HBL Architects
Contractor: Bass Construction Co.
Contract Amount: $1,273,000.00
Change Orders to Date: $0.00
Adjusted Contract Total: $1,273,000.00 % of Increase: 0.0
Billed to Date: $956,678.14 % Billed: 75.15
Contract Duration: 120 Days (Substantial)
Contract Days Extension: 35 Additional Rain Days:

Progress this period:

- Attended monthly progress meeting.
- Project has been delayed approximately 35 days. In addition to previous delays, the A/C manufacturer had not installed the updated software on the RTU #2, the system malfunctioned for a week before this error was discovered and corrected.
- A substantial completion walk-thru was held on June 24. There are still a number of items that are incomplete, and the contractor is working to complete all outstanding items.
- The Audio Visual equipment has been completely installed in both the training room and the classroom.
- Fire alarm installation is complete.
Fire and EMS Administration Building (Old PD Renovation) (cont.)

Planned activities for the period ending July 31, 2013:

- The security system installation should be complete July 19.
- The remaining door and hardware should be installed July 19.
- The exterior handrail should be installed July 19.
- Acquire certificate of occupancy.

Project Schedule:

- Construction to begin in January, 2013.
- Project has exceeded the construction schedule.

McHard Road Extension

Progress this period:

- Design consultant was selected.
- Reviewing TxDOT’s Advanced Funding Agreement (AFA)

Planned activities for the period ending July 31, 2013:

- Prepare AFA for Council agenda.

Project Schedule:

- Construction TBD.
Monthly Projects Update

June 27, 2013

Longwood Wastewater Plant
Barry Rose Wastewater Plant
SH35 Quiet Zone
Fire & EMS Station 3
West Oak / Somersetshire Lift Station Retirement

Prepared by:
Cuong Le

For Distribution to City Council
Longwood Wastewater Treatment Plant (Construction)

Design Engineer: Malcolm Pernie / ARCADIS
Contractor: RP Constructors, Inc. CM: Arcadis/Malcom Pernie
Original Contract Amount: $2,569,160.00
Current Contract Amount: $2,564,539.00
Billed to Date: $2,425,562.00 % Billed: 94.6
Contract Days Used: 417 % of Contract Days: 114

Progress this period:

- Rehabbed centrifuge installation and startup complete.
- Substantial walk through and achieved substantial completion on June 24, 2013.
- Contractor completed 90% of substantial punch list.
- 90% of final O&M, startup reports and warranty submitted.

Planned Activities for period ending July 2013:

- Complete substantial punch list.
- Complete SCADA work.
- Contractor submits all O&M, startup reports and warranty.
- Complete final completion walk through and final punch list.
- Complete balancing change order and final pay estimate. Final numbers scheduled to be under budget.
- Close out meeting.

Project Schedule

- Design NTP issued May 2, 2011
- Bid April 2012 - Early by one month
- Pre-Construction Meeting April 20, 2012
- Contractor NTP April 30, 2012
- Scheduled Substantial Completion May 31, 2013
- Substantial Completion June 24, 2013
Barry Rose Wastewater Treatment Plant (Construction)

Design Engineer: **Binkley & Barfield**
Contractor: **JTR Construction, Inc.**
CM: **Binkley & Barfield**

Original Contract Amount: **$3,143,020.00**
Current Contract Amount: **$3,133,570.20**
Billed to Date: **$3,066,319.20** % Billed: **97.9**
Contract Days Used: **381** % of Contract Days: **99.2**

Progress this period:
- Completed final walk through June 19, 2013.
- Complete SCADA work at centrifuge.
- Contractor demobilized.

Planned Activities for period ending July 2013:
- Complete final punch list items.
- Execute deductive change order. Final numbers scheduled to be under budget.
- Close out meeting.

Project Schedule
- Design of improvements complete November, 2011.
- Award Construction Contract March 12, 2012.
- NTP issued for March 26, 2012.
- Substantial Completion April 18, 2013 – Completed on time.
- Substantial punch list completion verified June 3, 2013.
- Final Walk through June 19, 2013
Quiet Zone Crossing and Median Improvements at Broadway at BNSF Railway (Construction)

Design Engineer: **ARKK Engineers, LLC.**
Contractor: General Contractor Services, Inc. CM: City of Pearland
Original Contract Amount: $141,240.00
Current Contract Amount: $141,240.00
Billed to Date: $0 % Billed: 0
Contract Days Used: 0 % of Contract Days: 0

Progress last period:
- BNSF contract and insurance submitted June 13, 2013. Waiting on BNSF to return contract before proceeding.
- Obtained TxDOT Traffic Control Permit.
- Contractor completed BNSF orientation.

Planned activities for the period ending July 2013:
- Contractor starts submitting submittals for approval.
- Schedule pre-construction after BNSF contract signed by all parties.

Project Schedule:
- Received TxDOT permit March 11, 2013.
- Advertisement scheduled for April 4 and 10 in Reporter News
- Mandatory Pre-bid April 17, 2013
- Bid April 25, 2013
- Council Award: May 13, 2013
Fire & EMS Station 3 (Design)

Original Contract Amount: $265,090.00
Current Contract Amount: $265,090.00
Billed to Date: $ 65,068.16 % Billed: 24.5

Progress last period:
- Site plan & exterior color scheme selected.
- 45% design development progress meeting, June 27, 2013.
- City reviewed traffic pre-emption design with Cobb Fendley.

Planned activities for the period ending July 2013:
- Continue finalizing right of way acquisition.
- Finalize interior color scheme.
- Submit 45% plan review comments from City staff to Architect.
- Architect identifies utility conflicts to start utility coordination.

Project Schedule:
- Council Award: February 11, 2013
- Notice to Proceed – February 25, 2013
West Oak & Somersetshire Lift Station Retirement (Design)

Design Architect: **ARKK Engineers, LLC.**
Original Contract Amount: $16,180.00
Current Contract Amount: $16,180.00
Billed to Date: $0 % Billed: 0

Progress last period:
- City staff reviewed preliminary proposed design and ask engineer to proceed with survey.

Planned activities for the period ending July 2013:
- Complete survey and start right of way acquisition.

Project Schedule:
- Notice to Proceed – June 3, 2013
Monthly Projects Update

June 27, 2013

Irrigation Improvements on McHard Road at Countyplace Blvd.
McHard Road Grading in Median at Countyplace Blvd.

Prepared by:
Jameson Appel

For Distribution to City Council
Irrigation Improvements for McHard Road at Countryplace Blvd.

Design Engineer: Huitt-Zollars, Inc.
Contractor: To be determined
Original Contract Amount: $0.00
Current Contract Amount: $0.00
Billed to Date: $0.00 % Billed: 0.00
Contract Days Used: 0 % of Contract Days: 0
Plan Status: 100% Complete

Progress last period:
- Redesigned plans submitted to Kinder Morgan and Monument waiting for approval

Progress this Period:
- Plans approved by pipeline companies (pending encroachment agreement)
- Plans redesigned to lower cost

Planned activities for the period ending July 31, 2013:
- Perform final review and prepare for bid.
- Acquire final signatures for encroachment agreement (Kinder Morgan)
- Project Schedule
 o 1st Advertisement 7/17
 o 2nd Advertisement 7/25
 o Pre-Bid 7/25
 o Bid Opening 8/1
 o Construction 3rd Quarter 2013

McHard Road Grading in Median at Countryplace Blvd.

Design Engineer: Huitt-Zollars, Inc.
Contractor: Champions Hydro-Lawn, Inc.
Original Contract Amount: $15,495.64
Current Contract Amount: $15,495.64
Billed to Date: $13,541.08 % Billed: 87.4
Contract Days Used: 13 % of Contract Days: 100.00
Plan Status: 100% Complete

Progress last period:
- Grass Growth 100%

Progress this Period:
- Executed balancing change order
Planned activities for the period ending July 31, 2013:

- Process Invoice # 2

Current Utility Relocations

State Highway 35 reconstruction (TxDOT)

- Century Link Fiber Relocation and installation of Tpole NW corner FM518/SH35
- AT&T manhole relocation (2) SH35 at Knapp Road

Pearland Parkway Extension

- Centerpoint pole relocations (2)